Chemistry and Thermodynamics of Europium and Some of Its Simpler **Inorganic Compounds and Aqueous Species** #### JOSEPH A. RARD University of California, Lawrence Livermore National Laboratory, Livermore, California 94550 Received March 11, 1985 (Revised Manuscript Received July 23, 1985) | onte | ents | | |-------|--|---| | I. | Introduction | 555 | | II. | Chemical Properties of Solid, Liquid, and | 557 | | | Gaseous Eu and Its Compounds | | | | A. Elemental Europium | 557 | | | B. Anhydrous Europium Oxides | 557 | | | C. Europium Hydroxide and Mixed-Anion | 558 | | | Hydroxides | | | | D. Anhydrous Chlorides, Fluorides, Bromides, | 559 | | | and Iodides | | | | E. Hydrated Chlorides and Their Thermal | 559 | | | Decomposition, Oxychlorides, and Other | | | | Hydrated Halides | | | | F. Europium Sulfides | 560 | | | G. Europium Orthophosphate and Other | 561 | | | Oxyphosphorus Compounds | 504 | | | H. Carbonates and Basic Carbonates | 561 | | | I. Europium Nitrates and Oxynitrates | 561
561 | | | J. Europium Sulfates | 561 | | T T T | K. Europium Salts with Oxyanions XO _n ⁻ Properties of Aqueous Solutions | 562 | | 111. | A. Hydrated Ions | 562 | | | B. Hydrolyzed Species in Eu ³⁺ Solutions | 563 | | | C. General Comments on Aqueous Complex | 563 | | | Formation | 000 | | | D. Aqueous Complexes of Eu ³⁺ with Cl ⁻ , Br ⁻ , | 564 | | | and I | • | | | E. Aqueous Complexes of Eu ³⁺ with F ⁻ | 564 | | | F. Aqueous RE(ClO ₄) ₃ Solutions | 564 | | | G. Aqueous Eu ³⁺ Halates: ClO ₃ ⁻ , BrO ₃ ⁻ , and | 565 | | | IO ₃ - | | | | H. Aqueous RE ³⁺ Complexes with H ₂ PO ₄ -, | 565 | | | $H_2PO_2^-$, and $P_3O_{10}^{5-}$ | | | | I. Aqueous Eu ³⁺ Carbonate Complexes | 565 | | | J. Eu ³⁺ Sulfate Complexes | 565 | | | K. Eu ³⁺ Nitrate Complexes | 565 | | | L. Aqueous Eu ²⁺ | 565 | | IV. | Thermodynamic Data | 566 | | | A. General Comments | 566 | | | B. Entropies and Relative Enthalpies of Solid | 566 | | | Compounds | E00 | | | 1. Eu Metal
2. EuO and EuS | 566
567 | | | 3. EuO and EuS 3. EuCl ₃ , EuBr ₃ , and Eu(OH) ₃ | 567
567 | | | 4. Eu ₂ O ₃ | 567 | | | 5. EuCl ₃ -6H ₂ O | 567 | | | 6. Eu ₃ O ₄ , EuOCl, and EuCl ₂ | 567 | | | C. Enthalpies and Gibbs Energies for EuS(s) | 568 | | | and Comments on Eu ₂ O ₂ S(s)/Eu ₂ O ₂ SO ₄ (s) | | | | D. Data for Solid EuO, Eu ₂ O ₃ , EuCl ₂ , EuCl ₃ , | 568 | | | and EuCl ₃ ·6H ₂ O and for Aqueous Eu ²⁺ and | | | | Eu ³⁺ | | | | E. Thermodynamics of Solid Eu ₃ O ₄ , EuOCl, | 571 | | |------|--|------------|--| | | EuBr ₃ , EuBr ₂ , and EuI ₂ | | | | | F. Thermodynamic Data for Hydrated Salts | 571 | | | | 1. Europium Nitrate | 571 | | | | 2. Europium Iodate | 572 | | | | 3. Europium Hydroxide and | 572 | | | | Hydroxychlorides | | | | | 4. Europium Perchlorate | 572 | | | | 5. Europium Bromate | 572 | | | | 6. Europium Carbonates | 573 | | | | 7. Europium(III) Sulfates | 573 | | | | 8. Europium(II) Sulfate | 573 | | | | 9 Europium Fluorides | 573 | | | | G. Thermodynamic Data for Aqueous Species | 574 | | | | Hydrolyzed Europium Species | 575 | | | | 2. Europium Halate Complexes | 575 | | | | Europium Phosphite and Phosphate | 576 | | | | Complexes | | | | | 4. Europium Nitrate Complexes | 576 | | | | Europium Chloride Complexes | 576 | | | | 6. Europium Iodide Complex | 577 | | | | 7. Europium Bromide Complexes | 577 | | | | 8. Europium Fluoride Complexes | 577 | | | | Europium Carbonate Complexes | 577 | | | | 10. Europium Sulfate Complexes | 577
578 | | | | Recommendations | | | | | Acknowledgments | | | | VII. | References | | | #### I. Introduction In 1752, A. J. Cronstedt described a new mineral associated with copper pyrite in a Swedish mine near Ryddarhyttan. He named this mineral tungstein or "heavy stone." This name was also applied to a mineral from Bohemia, CaWO₄, now known as scheelite. The Swedish mineral was later shown to be different and was then thought to be a Ca-Fe silicate. The rare earths, unknown at that time, were mistaken for calcium. In 1794, J. Gadolin isolated an oxide from a heavy black mineral at Ytterby and named the oxide ytterbia. C. G. Mosander in 1842 described oxalate precipitation and hydroxide precipitation to separate the ytterbia into three other "earths", which he named yttria, erbia, and terbia. These "earths" turned out to be complicated mixtures also. The isolation of La, lanthanides, yttrium, and scandium was not completed until 1908-1909 owing to the difficulties in separating them by fractional crystallization. Not surprisingly, there are numerous mistaken claims in the early literature as to the nature and number of rare earths. Joseph A. Rard was born in St. Louis, Missouri. He received a B.A. in chemistry from Southern Illinois University at Edwardsville (in 1967) and a Ph.D. in physical chemistry from Iowa State University (in 1973) under the direction of Professor Frank H. Spedding. He was a postdoctoral fellow at Ames Laboratory from 1973 to 1976 and a University of Illinois Visiting Research Assistant Professor of Geology during 1977 and 1978 (tenured entirely as a participating guest at Lawrence Livermore National Laboratory, however). He is currently a chemist with the Earth Sciences Department at Lawrence Livermore National Laboratory. His main research interests are in the experimental determination and critical reviews of thermodynamic and transport properties of inorganic compounds, especially their aqueous electrolyte solutions. Major emphasis has been for aqueous lanthanide, transition-metal, brine, and radwaste salts. Element number 63 is generally considered to have been discovered by E. DeMarcay in 1896 and called element Σ by him. The following year he named it europium (Eu), after Europe. Actually, some of its spectroscopic lines had been noted earlier by de Boisbaudran but were incorrectly attributed to other elements. Mellor's treatise should be consulted for a discussion of the discovery and separation of the various rare earths.1a La through Lu possess a free atom outer electron shell of 5d¹6s² or 6s² in their ground state. These outer electrons are readily lost when these elements form their ions and compounds, and the dominant valence state is plus three for the rare earths. La through Lu differ in their number of 4f electrons, which range from 0 for La to 14 for Lu. They occur below the outer electron orbitals and do not generally participate to a significant degree in chemical bonding. The 4f orbitals are fairly diffuse and do not effectively shield the outer electrons from the nuclear charge. Consequently, there is a gradual decrease in the ionic radius as the number of 4f electrons increase, which is known as the lanthanide contraction. Element 39, yttrium, is usually classified with the rare earths since it forms a +3 ion with a radius comparable to that of the heavier rare earths and because it occurs with them in nature. Scandium is also called a rare earth, but because of its smaller radius it has significantly different chemistry. We will restrict the term rare earth (abbreviated RE) to La through Lu and Y. Similarly the elemental forms will be denoted as REE. It should be noted that in the German literature SEE is used instead (for Seltenerdelemente). The terms lanthanide, lanthanon, and lanthanoid are usually restricted to Ce through Lu, but some authors also include lanthanum. Because of the chemical similarity of the REE, early attempts to separate them by fractional crystallization yielded only slight enrichments, so most available samples were not very pure. However, in 1935 McCoy² reported purification of "considerable quantities" of Eu by reduction of Eu³⁺ to Eu²⁺ with Zn amalgam in a Jones reductor, followed by precipitation as the nearly insoluble EuSO₄. McCoy generously supplied other scientists with samples of his Eu. Marsh³ modified this procedure by reducing RE ions with Na amalgam to form a Sm-Eu amalgam, followed by dissolution with acid and precipitation with sulfate. The Sm could be selectively oxidized with HNO₃ to effect its separation. The next major advance in separation of REE resulted from research done as part of the Manhattan project during World War II. The first unclassified reports on the separation of rare earths by ion-exchange chromatography, using differences in the stability of chelates (originally citrate complexes), appeared in the November 1947 issue of the Journal of the American Chemical Society. These reports were based on work done at Ames Laboratory (Iowa State University) and Oak Ridge National Laboratory. Government patent lawyers eventually gave the patents to Ames Laboratory, since their process was more advanced and provided better separation. These early results were based on anion-elution chromatography; later results using band-displacement chromatography provide more complete and rapid separation. See Powell^{4,5} for more details. Liquid-liquid extraction methods were developed in the early 1950's and also allow separation of large amounts of rare earths. 6-8 Variations on ion-exchange chromatography and liquid-liquid extraction are still the major methods used to separate REE commercially. REE are more common than the name implies, and over 100 minerals containing them have been described.^{9,10} However, only a few of these minerals contain REE in sufficient amounts to warrant commercial extraction. Among the major sources of REE are bastnasite, which is a fluorocarbonate containing mainly La, Ce, Pr, and Nd, monazite, which is a phosphate mineral containing mainly La, Ce, Pr, and Nd along with Th, and xenotime, which is a phosphate containing about 60% Y and about 30% total for Sm through Lu. However, Eu
is present only at about 0.1% or less in these ores^{8,9-11} and is present in about 1 ppm in the earth's crust.¹⁰ Data are available for the approximate abundances of REE in specific rocks, for the earth's crust, in meteorites, in lunar rock samples, and in the solar atmosphere.8-11 In general there is a decrease in abundances of 5- to 30-fold in going from La to Lu. In addition there is an even-odd alternation or zig-zag effect, with even atomic number REE generally being 2–8 times as abundant as their neighboring odd atomic numbered elements (except for Eu, which is sometimes anomalously low). This is a consequence of nuclear stability, since pairing of protons with other protons and of neutrons with other neutrons produces enhanced stability. Thus, when the REE are formed by cosmological processes, their relative amounts follow this trend. Promethium is an exception since it has no stable or very long-lived isotopes. Natural Eu is a mixture of about 48% ¹⁵¹Eu and 52% ¹⁵³Eu. Radioactive isotopes of Eu are not observed in minerals (except for trace amounts due to spontaneous fission of U) since its longest-lived radioactive isotopes have half-lives of only 13-16 years. The distribution of Eu in most minerals is different than expected from trends for other REE, and this is generally called the "europium anomaly". The distribution of Ce is also sometimes anomalous. Most REE form compounds in the +3 state. However, Sm, Eu, Tm, and Yb have some tendency to form +2 compounds, and Ce, Pr, and Tb sometimes form +4 compounds. Only for Eu and Ce are these other valence states sufficiently "stable" to affect the mineralogical distribution and aqueous chemistry. The aqueous chemistry of Eu³⁺ is generally consistent with trends for other RE³⁺ ions. The present report is a review of the chemical and thermodynamic properties of Eu and some of its inorganic compounds and aqueous species with emphasis on systems with potential geochemical applications. Carbonates are considered as inorganic compounds in this context. Literature coverage is from 1935 through mid 1985. High-temperature chemistry will be discussed in some cases, but only room-temperature thermodynamics will be evaluated except when hightemperature data yield thermodynamic information applicable to room temperature. Compounds of Eu considered are oxides, hydroxides, halides, hydroxyhalides, oxyhalides, sulfides, phosphates, carbonates, sulfates, and nitrates. Aqueous species considered include aguo ions, hydrolyzed species, and complexes of Eu³⁺ with halides, oxyhalides, sulfate, nitrate, carbonate, phosphate, hypophosphite, and triphosphate. Sulfate complexes and, especially at higher pH values, carbonate complexes tend to dominate RE speciation in sea water. 12,13 A number of reviews are available that give additional details and references about some of the compounds and species considered here. These references also provide comparative information about other REE and about compounds, complexes, and aqueous species not considered here. Sinha14 has described the crystal structures and coordination geometry of many lanthanide organic and inorganic compounds. Reviews on the REE halides include preparation of anhydrous halides, 15,16 general chemistry including double salts and oxyhalides, ¹⁷⁻¹⁹ and thermodynamics and solution chemistry. ^{16,18,19} A similar review covers oxyhalides, hydroxyhalides, chlorites, chlorates, and perchlorates.²⁰ Detailed reviews are also available for oxides^{21,22} and chalcogenides.²³⁻²⁵ Herman and Rairden²⁶ have reviewed REE electrochemistry for aqueous, nonaqueous, and fused-salt systems. Reviews are also available for absorption and fluorescence spectra of RE3+ in solution²⁷⁻²⁹ and for aqueous hydration and hydrolysis.^{30,31} # II. Chemical Properties of Solid, Liquid, and Gaseous Eu and Its Compounds ### A. Elemental Europium Metallic Eu is usually prepared by reduction of Eu_2O_3 with La metal at high temperatures under vacuum, followed by distillation of Eu. It is a fairly reactive metal that reacts with cold water about as fast as Ca to produce hydrogen and a yellow compound. The shredded metal reacts completely with moist air at room temperature within a few hours to produce a yellow compound with an empirical formula of $Eu(OH)_2 \cdot H_2O$. The metal thus needs to be carefully prepared and protected from air and water while being studied. Its melting point is $1099 \pm 10 \text{ K.}^{32}$ Crystal-structure determinations for solid Eu at 5, 78, and 293 K indicate a body-centered cubic structure with no observed structural transitions.³³ The bcc lattice constant at 298 K is 4.5820 ± 0.0004 Å.³² A number of properties indicate an anomaly at about 88 K. These include electrical resistivity, magnetic properties, and heat capacity. Heuron diffraction experiments indicate an antiferromagnetic transition with a Néel temperature of 91 K and were interpreted as indicating a helical spin structure below this temperature. Cohen et al. suggested, on the basis of Mössbauer spectra in this region, that Eu actually undergoes a sharp first-order phase transition at 88.6 K, which is slightly below the magnetic-ordering temperature. A λ -like anomaly at about 16 K was reported in heat capacity curves (both used metal from the same supplier), 34,39 but this is now believed to be an impurity effect possibly due to hydrogen. Vapor pressures for Eu were measured by Spedding et al. 32 from 696 to 900 K by Knudsen effusion-weight loss and by Trulson et al. 40 from 693 to 751 K using Knudsen effusion-mass spectrometry. Habermann and Daane 41 reanalyzed these vapor pressures by the third-law method using the metal entropy at 298 K 35 and high-temperature relative enthalpy data. 42 These recalculations yield enthalpies of sublimation of 175.4 kJ mol $^{-1}$ and 180.3 kJ mol $^{-1}$, 32,40 their average of 177.9 \pm 2.5 kJ mol $^{-1}$ is recommended. Three determinations of the first ionization potential of Eu yield 5.68 \pm 0.03, 43 5.61 \pm 0.10, 44 and 5.68 \pm 0.10 eV. 45 They are in excellent agreement and their average, 5.66 \pm 0.04 eV, is recommended. Entropy data for Eu and enthalpies of combustion and of dissolution in acid will be discussed later along with other thermodynamic data. ### **B.** Anhydrous Europium Oxides The Eu-O₂ phase system contains three major solid oxides. EuO is dark red and possesses the rock salt structure with $a = (5.1439 \pm 0.0005) \text{ Å}.^{22} \text{ Eu}_2\text{O}_3$ is the best known and is a thermodynamically stable oxide. It is white, sometimes with a pale pink cast, and exists in five polymorph forms. The low-temperature form has a body-centered cubic structure with a = 10.869 Å, whereas the next and the major higher temperature form is monoclinic with a = 14.082 Å, b = 3.604 Å, c =8.778 Å, and $\beta = 100^{\circ}00'$. Their transformation temperature is about 1370 K, but quenched monoclinic Eu₂O₃ is so slow to reach equilibrium that its lower temperature properties can easily be measured. Other structural modifications of Eu₂O₃ occur at ca. 2310, 2410, and 2550 K. See Eyring's review for more details.²² Dark reddish-violet Eu₃O₄ is orthorhombic with $a = 10.094 \pm 0.003$ Å, $b = 12.068 \pm 0.003$ Å, and c = $3.500 \pm 0.001 \text{ Å}.^{22}$ Bedford and Catalano⁴⁶ have found the melting points of the oxides to be around 2170 ± 50 K for EuO, 2270 ± 100 K for Eu₃O₄, and 2570 ± 50 K for monoclinic Eu₂O₃. They⁴⁶ cited three other melting point determinations of 2513 ± 10 , 2603, and 2273 K for Eu₂O₃; the last value is much too low. The solidification temperature for Eu₂O₃ in an oxygen atmosphere,⁴⁷ 2633 K, agrees fairly well. Eyring²² cited another value of 2564 K. The mean of 2577 ± 45 K is recommended for Eu₂O₃. Reed and Fahay⁴⁸ obtained 2253 ± 20 K for EuO. A superoxide Eu(O₂)₃ has also been reported, but it is very unstable and decomposes when heated slightly above room temperature.⁴⁹ Low-temperature bcc Eu_2O_3 is easily obtained by oxidation of Eu below 1370 K; high-purity bcc Eu_2O_3 samples are commercially available, but it is best to calcine them to remove traces of H_2O and CO_2 . Monoclinic Eu_2O_3 is obtained at higher temperatures, and crystal growth from a flux such as PbO or NaF yields high-purity single crystals. 50,51a Eu_2O_3 in air is generally slightly nonstoichiometric with a slight oxygen excess. 51b Most RE_2O_3 can be viewed as layer compounds: e.g., layers of $(REO)_n^{+n}$ formed from RE_4O tetrahedra sharing edges in a hexagonal array perpendicular to the c axis for the monoclinic sesquioxide. Certain other anions form RE compounds with similar layers. See the discussion in Eyring²² and references cited by him. EuO can be obtained by a variety of techniques, such as reduction of Eu₂O₃ with lanthanum followed by "sublimation" and condensation⁵² (actually, EuO decomposes and forms Eu(g); reoxidation of the condensate apparently occurs), reduction of EuOCl with LiH,⁵³ reaction of Eu₂O₃ with excess Eu,^{46,48} etc. YbO is the only other RE monoxide that might be "stable" at lower temperatures.⁵⁴ However, under conditions of high temperatures and pressures, Leger et al.⁵⁵ were able to synthesize LaO, CeO, PrO, NdO, SmO, and YbO. LaO, CeO, PrO, NdO, and SmO are metallic oxides; in contrast EuO and YbO are semiconductors. The REE is divalent in EuO and YbO, trivalent in LaO, CeO, PrO, and NdO (RE³⁺, O²⁻, e⁻), and intermediate for SmO. ${\rm Eu_3O_4}$ can be prepared by reacting stoichiometric amounts of EuO and ${\rm Eu_2O_3}$ at 1170 K in an inert atmosphere 46,56 or by reduction of EuOCl-Eu₂O₃ stoichiometric mixtures with LiH. 57a McCarthy and White 54 have discussed formation of Eu₃O₄ using H₂ reduction and also using CO-CO₂ gas buffers. Heating EuO(s) causes decomposition by the reaction $$4 \operatorname{EuO}(s) = \operatorname{Eu}_3 O_4(s) + \operatorname{Eu}(g) \tag{1}$$ at high temperatures. ^{53,57b}
Panish ⁵⁸ found that around 2000 K Eu_2O_3 vaporizes predominantly by $$Eu_2O_3(c) = 2Eu(g) + 3 O(g)$$ (2) whereas Eu₃O₄ decomposes by^{57a,b} $$3Eu_3O_4(c) = 4 Eu_2O_3(c, monoclinic) + Eu(g)$$ (3) These are the dominant thermal decomposition reactions below about 2000 K. However, EuO(g) can be detected around 1700 K and becomes the dominant vapor species above 2000 K. Eu₂O and Eu₂O₂ have also been detected in the vapor phase above 2000 K, and their formation enthalpies^{59,60} are in fair agreement. These high-temperature vapor species are outside the scope of this review. The reduced valence oxides EuO and Eu₃O₄ readily react with oxygen, and some of their properties are very sensitive to small deviations from stoichiometry. For example, stoichiometric EuO is a semiconductor; an oxygen excess makes EuO an insulator, whereas an oxygen deficiency (excess metal) makes EuO a metallic conductor or produces an insulator-metal transition.⁶¹ Details of the Eu-O₂ phase relationships can be found in McCarthy and White,⁵⁴ Bedford and Catalano,⁴⁶ and Shafer et al.⁶¹ Oxygen-exchange reactions of the type^{45,62-64} $$Eu(g) + MO(g) = EuO(g) + M(g)$$ (4) and the reaction of oxygen with europium vapor⁶⁵ have been studied above 2000 K by several workers. Murad and Hildenbrand⁶⁴ tabulated most of the published dissociation energies. These and electron-impact measurements⁴⁵ yield a dissociation energy for EuO(g) from 4.7 to 5.8 eV and a formation enthalpy ranging from -44.8 to -136.8 kJ mol⁻¹; these various studies are in poor agreement. Fortunately, EuO(g) is not a significant species at the lower temperatures we are interested in. Pedley and Marshall⁶⁶ have examined these data and recommend -59 ± 17 kJ mol⁻¹ for its formation enthalpy. Thermodynamic data are available for the enthalpies of formation of EuO(c), $Eu_3O_4(c)$, and $Eu_2O_3(c)$, for the entropy of EuO(c), and for high-temperature relative enthalpies of EuO(c) and both cubic and monoclinic Eu_2O_3 . These data will be discussed in sections IV.B, IV.D, and IV.E. # C. Europium Hydroxide and Mixed-Anion Hydroxides Eu(OH)₃(c) is generally prepared by hydrothermal synthesis, i.e., reacting Eu₂O₃ with concentrated alkali at elevated temperatures. ⁶⁷⁻⁶⁹ Temperatures around 500–600 K are best, since by about 770 K EuO(OH) is obtained instead. ⁷⁰ Crystal structure parameters for Eu(OH)₃ are in good agreement; ^{67,69,70} the two sets in complete agreement ^{67,69} yield $a = 6.352 \pm 0.001$ Å and $c = 3.653 \pm 0.001$ Å (hexagonal form). All of the RE-(OH)₃ are isostructural and have the UCl₃ structure. They also form isostructural monoclinic REO(OH) compounds; ⁷⁰ the unit cell dimensions are a = 6.10–6.26 Å, b = 3.72–3.75 Å, c = 4.34–4.39 Å, and $\beta = 109$ ° for EuO(OH). ^{56,70} When hydrothermal synthesis is performed at about 620–850 K in the presence of large amounts of Cl⁻ ions, Eu(OH)₂Cl is obtained. Eu(OH)₂Cl is monoclinic with a=6.166 Å, b=3.79 Å, c=6.734 Å, and $\beta=112.52^{\circ}$. All RE(OH)₂Cl form isostructural monoclinic crystals, 71,72 but for Dy on they can also form an orthorhombic modification. The synthesis is performed at about 620–850 K in the presence of large amounts of Cl⁻ ions, Eu(OH)₂Cl is monoclinic crystals, 71,72 but for Dy on they can also form an orthorhombic modification. Precipitation of Eu³⁺ with OH⁻ from aqueous Cl-solutions was found to give Eu(OH)₂Cl initially, but upon aging 50 days at pH 5.8–7.0 Eu(OH)_{2.5}Cl_{0.5} resulted, and further aging for a total of 150 days gave Eu(OH)₃.⁷³ However, Mironov and Polyashov⁷⁴ reported a fresh precipitate of Eu(OH)_{2.7}Cl_{0.3}. Precipitation from SO₄²⁻ solutions initially gave Eu(OH)_{2.6}(S-O₄)_{0.2} and from NO₃⁻ solutions Eu(OH)_{2.5}(NO₃)_{0.5}.⁷⁴ It is possible that precipitation of Eu³⁺ with base from solutions containing bulky noncomplexing anions such as ClO₄⁻ might give Eu(OH)₃ directly. However, it is certain that attempts to determine Eu(OH)₃ solubilities by pH titration in solutions of Cl⁻, NO₃⁻, SO₄²⁻, or most other anions give inaccurate results for fresh precipitates owing to formation of mixed-anion complexes. Precipitation from Eu(NO₃)₃ solutions by aqueous ammonia gave a substance with an empirical formula of Eu₂O₃·4.5H₂O (equivalent to 2Eu(OH)₃·1.5H₂O), and its thermal decomposition to Eu₂O₃ was investigated.⁷⁵ Since it is possible that not all the NO₃⁻ was washed out of the precipitate in the study, the exact nature of the hydroxide is unclear. Spedding et al.³² found that Eu metal reacts with moist air to form a yellow compound with an empirical formula of Eu(OH)₂·H₂O. Precipitation of Eu²⁺ with base gave a Eu(OH)₂·H₂O-Eu(OH)₃ mixture,⁵⁶ as does reaction of Eu₃O₄ with moist air.⁷⁶ Reacting Eu metal with 10 mol L⁻¹ NaOH gives pure Eu(OH)₂·H₂O, which is isostructural with Sr(OH)₂·H₂O and Ba(OH)₂·H₂O. Eu(OH)₂·H₂O crystals are orthorhombic with $\alpha = 6.701 \pm 0.002$ Å, $b = 6.197 \pm 0.002$ Å, and $c = 3.652 \pm 0.001$ Å.⁷⁶ Even in an inert atmosphere, Eu(OH)₂·H₂O gradually decomposes to Eu(OH)₃.⁵⁶ # D. Anhydrous Chlorides, Fluorides, Bromides, and Iodides All the REE can form anhydrous trihalides of the type REX₃ where X = F⁻, Cl⁻, Br⁻, or I⁻ (except, possibly, for EuI₃). Simple dehydration of hydrated or partially hydrated salts is unsatisfactory since there is a tendency to form REOX type oxyhalides instead. However, heating hydrated chlorides in a stream of dry HCl gives RECl₃. Several detailed reviews give details for the numerous satisfactory methods for preparing anhydrous halides. ¹⁵⁻¹⁹ Heating anhydrous EuCl₃ at 623 K was reported to yield a slightly chloride-deficient product, EuCl_{2.989±0.003}, and treatment with Cl₂ was necessary to get stoichiometric EuCl₃.⁷⁷ This is consistent with Ball et al.'s finding⁷⁸ that heating EuCl₃(s) under vacuum above 570 K caused partial decomposition to EuCl₂(s) and a chloride-deficient phase forms that retains the EuCl₃(s) lattice structure. EuCl₃ has the UCl₃ structure, and published lattice parameters shown significant variations: a = 7.278-7.375 Å and c = 4.071-4.137 Å. See ref 77 and 78 and other work cited by them. Ball et al.'s results⁷⁸ suggest that larger a and c values refer to a slightly chloride-deficient phase. EuCl₃ melts around 897 K,⁷⁹ but the studies cited above suggest this temperature is affected by Cl loss. Not surprisingly, Eu forms a fairly stable dichloride $EuCl_2$. It is usually prepared by hydrogen reduction of $EuCl_3$ at high temperatures. It has both a high-temperature CaF_2 type structure and low-temperature $PbCl_2$ type structure with a transformation temperature of 1020 ± 5 K.^{79,80a,b} Laptev et al.^{80a} found its melting point to be 1127 ± 2 K. They cited earlier studies which may have misinterpreted the structural change for melting. Matrix-isolated $EuCl_2$ and EuF_2 molecules have also been investigated.⁸¹ A high-pressure study found that EuBr₂ transforms from the SrBr₂ structure to the PbCl₂ structure at high pressures. Hodorowicz et al. Also have investigated EuCl₂-EuBr₂, EuCl₂-EuI₂, and EuBr₂-EuI₂ solid phases and their structures. Also see the single-crystal X-ray and Mössbauer studies of Sanchez et al. Also Laptev et al.⁸⁵ have investigated the EuCl₃–EuCl₂ phase diagram in detail. Intermediate phases are EuCl₃·2EuCl₂ (EuCl_{2.333}), EuCl₃·3EuCl₂ (EuCl_{2.25}), and EuCl₃·4EuCl₂ (EuCl_{2.20}).⁸⁵ EuCl₃·2EuCl₂ is hexagonal with $a=4.841\pm0.005$ Å and $c=12.41\pm0.01$ Å;⁸⁶ EuCl₃·4EuCl₂ is tetragonal with $a=4.970\pm0.007$ Å and $c=6.76\pm0.02$ Å.⁸⁷ Polyachenok and Novikov reported that molten EuCl₃ near its melting point contains about 8% EuCl₂.88 Hastie et al. found by using mass spectrometry that EuCl₃+ occurs in the vapor above solid EuCl₃, but upon melting this species disappears rapidly and the EuCl₂+ ion current becomes larger.89 This strongly indicates that EuCl₃ rapidly decomposes to form EuCl₂ upon melting. Consequently, vapor pressures for molten EuCl₃ are not very accurate, 90-92 and recommended thermodynamic values for it are suspect. Polyachenok and Novikov88 studied the EuCl₃-EuCl₂ liquid equilibrium using Cl₂ vapor pressure measurements. Hastie et al.⁸⁹ stabilized the Eu(III) state by using molten EuCl₃-LuCl₃ mixtures and detected EuCl₃⁺ and Eu₂Cl₅⁺ in the vapor. Their measurements yield a vapor dimerization enthalpy of -134 ± 25 kJ mol⁻¹. The situation is simpler for $EuCl_2(l)$ since it vaporizes congruently. Vapor pressure studies have been made by using boiling point⁹³ and Knudsen-effusion methods.⁹⁴ Of these, Hariharan and Eick's⁹⁴ is the more detailed and probably the more accurate. Polyachenok and Novikov's data⁹³ extrapolated to 1 atm gives a normal boiling point of 2463 K, whereas Hariharan and Eick obtained 2335 \pm 35 K.⁹⁴ Their vaporization enthalpies also differ by 115 kJ mol⁻¹. EuCl₂ vapor pressures were also investigated with gas-phase equilibria involving other RE metals and also Ba.^{95,96} A large number of ternary Eu chlorides have been prepared. For example, the KCl–EuCl₃ phase diagram contains KEu₂Cl₇, K₂EuCl₅, and two crystalline modifications of K₃EuCl₆.⁹⁷ The dieuropium phyllochlorides KEu₂Cl₇, RbEu₂Cl₇, and CsEu₂Cl₇ were investigated by Meyer et al.⁹⁸ Morss^{99a} prepared a number of triple salts of the type Cs₂NaRECl₆ (Eu was not studied) and measured their enthalpies of solution. These mixed salts are outside the scope of this review. EuF₃ has a lower temperature hexagonal modification (below about 920 or 1125 K) and a higher temperature orthorhombic modification. If a,b,99b It melts at 1531 \pm 8 K.99b EuF₃ can be reduced to EuF₂ at elevated temperatures by using H₂ or Ca. If a EuF₂ melts at 1670 \pm 5 K.99c The Eu₂O₃–EuF₃ phase diagram contains low-temperature rhombohedral and high-temperature cubic EuOF.99d Asprey et al. 99e attempted to prepare EuI $_3$ by reaction of Eu and I $_2$ vapor under pressure. They could not identify the product by X-ray diffraction; either it was not EuI $_3$ or EuI $_3$
has a different structure from the other REI $_3$. Whether or not EuI $_3$ can be prepared is uncertain, since most methods give EuI $_2$ instead. 16 Anhydrous EuBr₃ is dark rust brown at room temperature, ^{99f} in contrast to most other Eu³⁺ ionic compounds (including EuBr₃·6H₂O), which are colorless. This color becomes lighter at lower temperatures. Haschke^{99f} suggested that an electron transition is involved but that some Schottky type point defects may also have been present. A bromide to europium charge transfer now seems more likely.^{99g} EuBr₃ decomposes incongruently to form light gray EuBr₂ above 500 K.^{99f} # E. Hydrated Chlorides and Their Thermal Decomposition, Oxychlorides, and Other Hydrated Halides RECl₃, REBr₃, and REI₃ are readily soluble in water, whereas REF₃ salts are sparingly soluble.¹⁶ At room temperature, the solid phases precipitating out from chloride solutions are RECl₃·7H₂O for La through Pr. The stable solid phases are RECl₃·6H₂O for Nd through Lu and Y, and their crystals are isostructural. ^{100,101} EuCl₃·6H₂O is monoclinic with $a=9.67\pm0.03$ Å, $b=6.52\pm0.01$ Å, $c=7.99\pm0.02$ Å, and $\beta=94^{\circ}36'\pm30'$ from single-crystal determination. ¹⁰² These parameters are in good agreement with powder-pattern data. ¹⁰⁰ The Eu³⁺ is coordinated by six waters and two chlorides. EuCl₂·2H₂O is monoclinic with a = 11.661 Å, b = 6.404 Å, c = 6.694 Å, and β = 105°37′, and it is isostructural with SrCl₂·2H₂O.¹⁰³ Thermal decomposition of EuCl₃·6H₂O yields EuOCl, which then reacts with air at high temperatures to form Eu₂O₃. $^{104-107}$ Intermediate products of decomposition are under dispute, with 2EuCl₃·EuOCl (= Eu₃OCl₇), Eu(OH)Cl₂, and/or EuCl₃·0.5H₂O claimed by various workers. Sokolova et al. 107 reported a four-stage dehydration of EuCl₃·6H₂O (intermediate hydrates not specified). EuCl₃·6H₂O fuses at 425 K in a sealed tube. 108 Haase and Brauer¹⁰⁹ studied the thermal decomposition of $EuCl_2 \cdot 2H_2O$ in N_2 , Ar, and He and observed the sequence $EuCl_2 \cdot 2H_2O \rightarrow EuCl_2 \cdot H_2O \rightarrow EuCl_2 \cdot wH_2O$ (w < 1) $\rightarrow EuCl_2$ (orthorhombic) $\rightarrow EuCl_2$ (cubic). Further heating yields EuOCl. Baev and Novikov¹¹⁰ studied the equilibrium $$2 \text{ RECl}_3(s) + O_2(g) = 2 \text{ REOCl}(s) + 2 \text{ Cl}_2(g)$$ (5) for several REE, but unfortunately EuOCl was not studied. Hariharan and Eick¹¹¹ studied the reaction at elevated temperatures, so thermodynamic data can be derived for EuOCl(s). However, Bunda et al. ^{112a} claimed that EuCl₃(g) forms instead. All REOCl have the PbFCl structure; for EuOCl, a=3.964-3.965 Å and c=6.695-6.696 Å. ²⁰ Tanguy et al. ^{112b} investigated heating EuO and EuCl₂ together under vacuum and produced Eu₄OCl₆, which has the Ba₄OCl₆ type structure. Unit cell parameters are $a=9.45\pm0.01$ Å and $c=7.16\pm0.01$ Å. A similar reaction also occurs for the bromide analogue. ^{112b} EuF₃ forms a hemihydrate as the stable hydrated phase at room temperature, EuF₃·0.5H₂O.^{16,17b} It has a solubility around 10⁻⁵ mol L^{-1,16} However, Batsanova and Lukina's X-ray powder pattern and refractometric study^{113a} suggests that "hydrated trifluorides" are not true hydrates but rather the water is in vacancy sites. EuF₃·0.5H₂O precipitated from aqueous HF has two nonequivalent types of water, as indicated by thermal dehydration.^{113b} Heating to higher temperatures gives EuOF. A claim^{113c} that EuF₃·4H₂O precipitates from aqueous HF at 293 K needs to be confirmed. Very soluble EuI₃·9H₂O was reported as the solid hydrated iodide phase at around 273 K.^{113d,e} Partial drying under vacuum gave EuI₃·6H₂O.^{113e} Reacting EuI₂ with moist O₂ gives EuOI.^{17a} REBr₃·6H₂O are isostructural with RECl₃·6H₂O.^{113f} Heating or vacuum drying of EuBr₃·6H₂O gave EuBr₃·H₂O followed by anhydrous EuBr₃.^{106,113g} Further heating gave EuOBr. #### F. Europium Sulfides Solid compounds that have been reported to form in the Eu-sulfur system include EuS, Eu₃S₄, Eu₄S₇, Eu₂S_{3.81}, and EuS₂.²⁵ Eu₂S₃ has been claimed, but evidence is limited, and it is probably metastable.²⁵ Only EuS and Eu₃S₄ have been studied in any detail, and they will be emphasized here. EuS is a magnetically ordered semiconductor with much industrial interest.²⁴ EuS can be prepared by a wide variety of techniques. Examples include reaction of Eu₂O₃, H₂, and sulfur gas at about 1300 K, 114 direct reaction of equivalent amounts of Eu and sulfur at about 770 K, 115 reaction of Eu₂O₃ with flowing H₂S at 1470 K, 116 reaction of EuSO₄ with H₂S at 1125 K, 60 high-temperature thermal decomposition of Eu₃S₄, 117 etc. Chemical transport of EuS by high-temperature vaporization can yield large single crystals. 117,118a EuS has the fcc rock salt structure with a=5.945-5.971 Å. 24,25,118a Heating EuS in air at ca. 750 K was reported to give Eu₂O₂S. 119 Eu₃S₄ can be prepared by reacting EuS and S in stoichiometric amounts in an evacuated ampoule at 870 K, by reacting Eu₂O₂(CO₃) with a H₂S stream at 690 K,²⁵ or by thermal decomposition of Eu thiocyanate in an Ar–CS₂ stream at 770–870 K. It has the cubic Th₃P₄ structure with a=8.527-8.537 Å. Heating it in air can give Eu₂O₂S, Eu₂O(SO₄)₂, Eu₂(SO₄)₃, and Eu₂O₂(SO₄) at different temperatures, with the latter product being produced by about 1000 K.^{25,119} Solid Eu₂S₃ is usually considered to be nonexistent, but metastable α and β forms were claimed that spontaneously transform into Eu₃S₄ in a few weeks.²⁵ Other phases reported in the Eu–S phase diagram are Eu₄S₇, EuS₂, and the sulfurdeficient phase Eu₂S_{3.81}. These phases have been studied very little. See the Gmelin volume²⁵ for references and details. Eliseev^{118b} studied the lattice constant of the Eu–S system from 15 to 54 at % sulfur. The lattice constant was around 5.965 Å up to 50% sulfur and about 5.97 Å at higher sulfur concentrations. A value of about 5.56 Å would be expected for Eu₂S₃. 118b The higher sulfides of Eu decompose to EuS upon heating in the absence of oxygen. For example $$2 \text{ Eu}_3 \text{S}_4(\text{s}) = 6 \text{ EuS}(\text{s}) + \text{S}_2(\text{g})$$ (7) occurs at high temperature. 118 EuS is generally considered to sublime incongruently according to $$EuS(s) = Eu(g) + \alpha S(g) + [(1 - \alpha)/2]S_2(g)$$ (8) where the sulfur exists as an equilibrium mixture of S and S_2 . 116 Some workers have assumed that all gaseous S is dissociated to the monomer at experimental temperatures of around 2000 K. Nagai et al. 114 and Gordienko and Fenochka 120 found that some EuS(g) is also present: Smoes et al. 60 used mass spectrometry to show that at 2100 K the amounts of vapor species above EuS (relative to Eu(g) = 1) are 0.22 S, 0.07 S₂, 0.05 EuS, 3 × $^{10^{-4}}$ EuS₂, 2 × $^{10^{-4}}$ EuS₂, and 2 S moes et al. obtained enthalpy of formation data for the vapor species EuS, EuS₂, EuS₂, and EuS₂, and EuS₂ and also EuS₂OS formed by reaction with oxygen impurities. 60 # G. Europium Orthophosphate and Other Oxyphosphorus Compounds REE orthophosphates, REPO₄, are of some importance since they occur with Th in one of the major REE minerals (monazite), and with Y in another (xenotime). The REPO₄ from La to Gd are isostructural with the monazite structure, whereas Tb to Lu have the zircon structure. 121a Reported unit cell parameters for EuPO₄ are a = 6.61-6.65 Å, b = 6.81-6.84 Å, c = 6.29-6.33 Å, and $\beta = 103^{\circ}05'-104^{\circ}00'$. Single crystal structure data are available for EuPO₄. 121a They can be prepared by precipitating soluble REE salts with Na₂HPO₄ and then thermally drying the product. 121b Thermal decomposition above 2300 K was reported to give Eu₇P₃O₁₈, Eu₃PO₇, and Eu₈P₂O₁₇, with ultimate decomposition to Eu₂O₃. 122 It is quite likely that Eu³⁺ will form basic phosphates and hydrogen pyrophosphates as have been described for La3+.123 Bamberger et al.¹²⁴ have reviewed claims of alkali metal-REE double phosphates and concluded that most claims are based on misidentification of the solid phases. #### H. Carbonates and Basic Carbonates Precipitation of the slightly soluble carbonate of Eu³⁺ generally gives Eu₂(CO₃)₃·3H₂O. ¹²⁵⁻¹²⁷ This can be dehydrated to give anhydrous Eu₂(CO₃)₃. ¹²⁸ However, when free alkali is present, basic carbonates Eu(OH)-CO₃·nH₂O are obtained with n=0.25-0.6. ¹²⁷ Hydrothermal synthesis ^{129a} for several REE's gave salts such as RE₂O(OH)₂CO₃ and RE₂O₂(CO₃), and similar phases form for Eu. ^{129b} Thermal decomposition of Eu₂(CO₃)₃ also gives Eu₂O₂(CO₃). ¹³⁰ Double carbonates such as Na[Eu(CO₃)₂]·6H₂O and K[Eu(CO₃)₂]·3H₂O have also been prepared. ¹³¹ Nonstoichiometric basic carbonates Eu₂(CO₃)_x(OH)_{2(3-x)}·nH₂O have been described in the Eu₂O₃-CO₂-H₂O system. ¹³² #### I. Europium Nitrates and Oxynitrates Europium forms a trinitrate that is fairly soluble in aqueous solution. Mironov et al. ¹³³ were able to prepare Eu(NO₃)₃·6H₂O, Eu(NO₃)₃·5H₂O, Eu(NO₃)₃·4H₂O, Eu(NO₃)₃·4H₂O, Eu(NO₃)₃·4H₂O, and Eu(NO₃)₃. Methods used include precipitation from H₂O or aqueous HNO₃, dehydration of higher hydrates by P₂O₅ or by vacuum dehydration, and reaction of water with the anhydrous salt. Their results indicate that the thermodynamically stable form is Eu(NO₃)₃·6H₂O from about 238 to 306 K, Eu(NO₃)₃·5H₂O from about 306 to 333 K, and Eu(NO₃)₃·4H₂O from 333 to 364 K. The melting point of Eu(NO₃)₃·4H₂O is 364 K. ^{108,133} Other studies ^{134,135} confirm that the hexahydrate is the stable form at room temperature. Thermal decomposition of the hydrated nitrate produced slight inflections due to stepwise dehydration and Eu(NO₃)₃ formation,¹³³ but these intermediate stages are not usually observed due to a considerable tendency to decompose to EuO(NO₃).^{136,137} Eu₃O₄(NO₃) has been claimed to form around 800 K,^{136,137} and Eu₂O₃ begins to form around 1000 K. Very careful heating of hydrated nitrates under vacuum (maximum temperature about 470 K) is required to get fairly pure anhydrous Eu(NO₃)₃.¹³⁸ A phase of the type
Eu₂O₃·nN₂O₅·pH₂O has also been claimed to form during thermal decom- position of hydrated Eu(NO₃)₃. 139 Crystal structures for Eu(NO₃)₃·nH₂O are unknown. However, Eu(NO₃)₃·6H₂O is isostructural with the Pr, Nd, Sm, and (possibly) Gd analogues. ^{134,135} Siekierski et al. ¹⁴⁰ examined available solubility data for RE-(NO₃)₃·nH₂O in water in detail and suggested correlations of solubility changes with crystal structure changes. They also found that Mironov et al. 's ¹³³ Eu(NO₃)₃·nH₂O solubilities were much too low and were inconsistent with data for other REE. Rard ¹⁴¹ determined the aqueous solubility of Eu(NO₃)₃·6H₂O at 298.15 K. Heating EuCl₃ in molten LiNO₃–KNO₃ and NaN-O₃–KNO₃ eutectics produced EuO(NO₃), whereas further heating gave Eu₂O₃.¹⁴² It has been suggested¹⁴² that Eu₂O(NO₃)₂ was another possible decomposition product. Similar oxynitrites, Eu₂O(NO₂)₂ and EuO(NO₂), were suggested in NaNO₂–KNO₂ eutectics.¹⁴³ No direct evidence was obtained in either study for these chemical formulas, but they were suggested by weight loss data upon thermal decomposition. A number of double nitrates of the type A₂RE(NO₃)₅ are known for Eu and other REE where A denotes a monovalent cation. See Bünzli et al.¹⁴⁴ and references cited by them for details. #### J. Europium Sulfates REE from Pr through Lu and Y form isostructural RE₂(SO₄)₃·8H₂O as the stable solid hydrated form at room temperature. 145 These crystals are monoclinic, and Eu₂(SO₄)₃·8H₂O has $a = 18.317 \pm 0.003$ Å, b = 6.75 $\pm 0.02 \text{ Å}, c = 13.564 \pm 0.004 \text{ Å}, \text{ and } \beta = 102^{\circ}15'.$ Wendlandt146 studied several of these salts and found that thermal decomposition of light RE sulfates gave intermediate hydrates, whereas heavy RE sulfates generally went directly to the anhydrous sulfate. Ivanov¹⁴⁵ studied most of the RE₂(SO₄)₃·8H₂O, including Eu, and in contrast found that they dehydrated directly to RE₂(SO₄)₃ between 373 and 523 K, that anhydrous sulfates decomposed to oxysulfates around 970-1070 K, and that further decomposition occurred around 1470-1570 K. These oxysulfates were not described in detail but were presumably of the type RE₂O(SO₄)₂ or RE₂O₂(SO₄) that were reported for Gd. ^{147a} RE₂O₂SO₄ form around 1300 K.147b Double salts of the type $RE_2(SO_4)_3 \cdot Cs_2SO_4 \cdot 8H_2O$ are also known; they dehydrate in stages when heated. REE's from Sm to Lu form double salts with the empirical formula $K_6RE_4(SO_4)_9$. ^{148b} RE₂(SO₄)₃ solubilities in water decrease with increasing temperature, in contrast with most other salts.¹⁴⁹ Saturated aqueous solutions at 298 K contain about 4×10^{-2} mol L⁻¹ of Eu₂(SO₄) $_3^{149}$ and about 10^{-5} mol L⁻¹ of EuSO₄. This lower solubility for EuSO₄ is the basis for separation methods described in the introduction. A dihydrate of EuSO₄ has also been reported. Zaidi et al.^{151a} prepared a number of RE(SO₃Cl)₃ salts by reacting chlorosulfuric acid with the corresponding anhydrous RE benzoates. #### K. Europium Salts with Oxyanions XO_n Hydrated chlorite (${\rm ClO_2}^-$) and chlorate (${\rm ClO_3}^-$) salts are known for several REE, but there is an almost total lack of data for Eu.²⁰ Much more data are available for perchlorates.²⁰ Petrov et al.^{151b} prepared Eu(ClO₄)₃·9H₂O. However, various other studies for REE reported 5, 6, 7, 8, 9, and occasionally 10 hydrates, ^{151b,152} so it is likely that these hydrates differ little in thermodynamic stability. Thermal decomposition yields dehydration followed by decomposition to REOCl or RECl₃, ^{152,153} but the individual steps are not well separated. ${\rm Eu}({\rm TcO_4})_3\cdot 3{\rm H_2O}$ has been prepared, and it can be dehydrated to the monohydrate and anhydrous salts, but little else is known about it. Varfolomeev et al. Peported preparation of ${\rm RE}({\rm ReO_4})_3\cdot 4{\rm H_2O}$ for several RE; dehydration gave lower hydrates and anhydrous salts. Thermal decomposition of ${\rm RE}({\rm ReO_4})_3$ gave ${\rm RE}_3{\rm ReO_8}$. RE(IO₃)₃·nH₂O are well-known and are soluble to about 10^{-3} mol L⁻¹.^{155,156} Unit cell parameters are available for triclinic Eu(IO₃)₃·2H₂O crystals:¹⁵⁷ $a=7.47\pm0.03$ Å, $b=10.66\pm0.03$ Å, $c=7.33\pm0.02$ Å, $\alpha=105.1\pm0.2^{\circ}$, $\beta=110.9\pm0.3^{\circ}$, and $\gamma=97.6\pm0.3^{\circ}$. Bromate salts RE(BrO₃)₃·9H₂O are interesting in that the 9 waters directly surround the RE³⁺ and the anions are further away from the hydrated cation (ethyl sulfates are similar).¹⁵⁸ Eu(BrO₃)₃·9H₂O has a solubility of 1.21 mol kg⁻¹ at 298.15 K.¹⁵⁹ #### III. Properties of Aqueous Solutions #### A. Hydrated Ions Below a pH of about 5 or 6, RE³⁺ ions in aqueous noncomplexing media exist predominantly as unhydrolyzed aquo ions. The ionic radius of RE3+ decreases from La³⁺ to Lu³⁺ due to the lanthanide contraction. This change in ion size and the resulting change in the ratio of the ionic charge to the radius down the series obviously should result in significant changes in hydration. Despite numerous studies, there is no general consensus about the actual hydration changes that occur. For example, there are conflicting claims that the inner-sphere hydration number is constant across the series (at 6, 8, or 9 waters!) or that there is a decrease of one water between Nd and Tb (usually from 9 to 8, but 10 to 9 and 8 to 6 have also been suggested), and there are a few claims that the inner-sphere hydration increases. In addition, there is an increase in total hydration (inner- plus outer-sphere hydration) in going from La³⁺ to Lu³⁺, and hydration trends may also be modified when complexing anions like NO₃ disturb the hydration spheres. It is thus worth briefly considering hydration claims. Only a few anions such as Cl⁻ and ClO₄⁻ form complexes that are weak enough to preserve the basic hydration trends of RE³⁺ ions. The earliest advocates of a RE³⁺ hydration number decrease in the inner coordination sphere for noncomplexing media were Spedding and co-workers, who based their argument on changes in the partial molal volume at infinite dilution (and analogies with hydrated salts).¹⁶⁰ This same trend persists to about 3 mol kg⁻¹ in RECl₃ solutions.¹⁶¹ Other properties such as enthalpies of dilution exhibit similar sharp breaks,¹⁶² but the argument as to whether a hydration change should cause an increase or decrease in their properties is less clear cut. Electrical conductances of aqueous RE(ClO₄)₃ show a prominant reversal between Nd and Tb above about 3.0 mol kg⁻¹, ¹⁶³ and a similar reversal also occurs in the viscosities.¹⁶⁴ Mioduski and Siekierski¹⁶⁵ studied cocrystallization of lanthanide ethyl sulfates (which have only waters around the RE³⁺ in the crystals) and found the free energies of cocrystallization showed breaks at Pm and Gd. Since the crystals have no structural changes, this suggests coordination changes in the aqueous phase. A number of other properties show a more gradual S-shaped trend, which is usually interpreted in terms of an overall hydration-number increase as the RE radius decreases. Relative viscosities^{164,166} and electrical conductances¹⁶³ below about 2 mol kg⁻¹ show this behavior and were interpreted with this model (but shape factors rather than hydration could possibly explain the viscosity data).¹⁶⁶ Both hydration entropies¹⁶⁷ and standard-state ionic entropies^{168a} support the overall hydration-increase model. Bertha and Choppin¹⁶⁷ discussed available data and concluded that there is between a 10% and 20% increase in net hydration in going from La³⁺ to Lu³⁺; capillary diffusion data yield a similar estimate.^{168b} Water activity data^{169,170} very clearly show this increasing hydration. In brief, the hydration number decrease model is the following. The lanthanide contraction causes the ionic radius to decrease from La to Lu. As this occurs, the surface charge density on the RE ion increases, and this causes an increase in the ion-dipole forces that affect hydration. Thus total hydration increases from La to Lu. However, the decreasing ionic radius means that the inner-sphere radius decreases until the inner sphere can no longer accommodate as many waters, and then one water is gradually displaced between Nd and Tb. When this occurs, the inner hydrated radius decreases more rapidly so outer-sphere waters can approach more closely; thus interaction of the RE³⁺ with outer-sphere water increases more rapidly with atomic number in this region. Changes in the hydrogen bonding between inner- and outer-sphere waters may also be involved. 171 This yields the familiar S-shape. 170,172a Spedding et al.¹⁶⁰ suggested that equilibrium mixtures of the 9 and 8 hydrates are present between Nd and Tb. However, Mioduski and Siekierski¹⁶⁵ suggested that fractional coordination may be involved instead. Kanno and Hiraishi^{172b} studied the Raman spectra of H_2O bound to RE^{3+} in glassy (frozen) $RECl_3$ solutions. Two types of bound water were found for Eu and Gd but only one for the other REE's. This suggests that a mixture of $RE(H_2O)_9^{3+}$ and $RE(H_2O)_8^{3+}$ is present for solutions of these two elements.^{172b} The relative amounts of each species varied opposite to that expected from simple mass-action considerations!^{172b} In contrast, several other studies were interpreted as indicating no hydration change. Reuben and Fiat¹⁷³ found no anomalous shift in water NMR peaks for RE perchlorates with concentration, whereas some shifting would be expected for intermediate RE if an equilibrium is involved. Heat capacities of RE³⁺ in perchlorate solutions also exhibit no maximum with ionic radius as would be expected for such an equilibrium.¹⁷⁴ Hinchey and Cobble^{175a} found that the standard-state ionic entropies plotted vs. the inverse of the ionic radius squared were nearly linear. This was later shown to result from inaccurate and, in some cases, estimated input data; these entropies do in fact show an S-shape when more accurate input data are
used.¹⁶⁸ Marcus³⁰ has reviewed hydration trends in detail and cites ref- erences for other studies that indicate a constant hydration number, especially the work of Geier and Karlen.^{175b} Some of these authors consider the twoseries trends to be due to structural changes rather than a hydration number change. A very plausible resolution to some of these apparently contradictory conclusions about RE3+ innersphere hydration has been given by Marcantonatos et al. 175c They noted that if only the simple inner-sphere hydration equilibrium is considered, increasing either the REX₃ concentration, or the X⁻ concentration (X⁻ = halide, perchlorate, or other simple monovalent anion) at constant RE3+ concentration, should cause the inner-sphere hydration to decrease. However, if outer-sphere ion pairs are also considered, then four equilibria are present involving $RE(H_2O)_n^{3+}$, $RE(H_2O)_{n-1}^{3+}$, $RE(H_2O)_nX^{2+}$, and $RE(H_2O)_{n-1}X^{2+}$. They showed that given reasonable values for the equilibrium constants, increasing the electrolyte concentration could actually increase the inner-sphere hydration number. Thus, even though outer-sphere ion pairs do not remove inner-sphere waters, they can shift the equilibria to favor higher primary hydration numbers for RE³⁺ from Sm³⁺ to Gd³⁺. Also see the discussion in section III.F. Habenschuss and Spedding^{176a} did X-ray scattering measurements for concentrated RECl₃ solutions and found that the inner-sphere hydration number decreases by one. This is one of the strongest pieces of evidence for their model. They obtained a hydration number of 8.3 for Eu³⁺. Results from neutron scattering^{176b,c} give hydration numbers of 8.5 ± 0.2 for Nd³⁺ and 7.4 ± 0.5 for Dy³⁺; although the absolute values are smaller, the hydration number decrease is observed. Fluorescence lifetime measurements¹⁷⁷ for Eu(ClO₄)₃ in water-acetonitrile mixtures yield a hydration number of 8.9, laser-induced luminescence decay^{178a} measurements in water yield 9.6 ± 0.5 waters, and fluorescence lifetimes^{178b} in water yield 9.0. Thus the only agreement is that the hydration number of Eu³⁺ is around 8 or 9. Krestov and Kurakina's 179 hydration numbers of 6 for the whole RE series, from derivatographic measurements, obviously refer to the hydrated nitrate crystals and not to the aguo ions. Since the inner-sphere hydration number of Eu³⁺ is somewhat uncertain, it is not surprising that so is its symmetry. Sayre et al. 180 used fluorescence spectra measurements to conclude the symmetry is either D_{2h} , C_{2h} , or C_i , and "presumed" D_{2h} . Sage et al.'s sign magnetic circular dichroism (MCD) measurements of the ${}^7F_0 \rightarrow$ $^5\mathrm{D}_1$ transition indicate the symmetry is D_{2h} or lower. A conflicting MCD study¹⁸² concluded that only a threefold axis, D_{3h} or C_{3v} , could explain their results. We conclude that the RE³⁺ ions very likely undergo an inner-sphere hydration number decrease between Nd3+ and Tb3+, Eu3+ has an inner-sphere hydration number around 8 or 9, the Eu³⁺ aquo ion has low symmetry (probably D_{2h} or less), and the inner-sphere hydration number probably is changed by outer-sphere complex formation at higher Cl⁻ and ClO₄⁻ concentrations. More work needs to be done to resolve some apparently conflicting conclusions mentioned above. ### B. Hydrolyzed Species in Eu³⁺ Solutions Titration of aqueous RE3+ salt solutions with alkali metal hydroxides produces precipitation between pH values of 6 and 8, but the actual precipitation pH depends on concentration, anion, and RE, and it is affected by aging. Several studies have been made for Eu³⁺ salts. Moeller and Kremers^{183,184} titrated 0.1 mol L⁻¹ RE nitrate, sulfate, and acetate solutions with 0.1 mol L⁻¹ NaOH. The pH at incidence of precipitation was 6.82 for $Eu(NO_3)_3$, 6.68 for $Eu_2(SO_4)_3$, and 7.18 for Eu(OAc)₃. Another study of titration of 0.03 mol L⁻¹ solutions with NaOH gave initial precipitation around pH 6 for EuCl₃ and Eu₂(SO₄)₃ and around 6.5 for Eu-(NO₃)₃.⁷⁴ Grebenshchikova et al. 185 reported the start of precipitation at pH 6.2-6.3 in nitrate solutions and Weaver and Shoun¹⁸⁶ got ca. pH 7.5 for 0.002 mol L⁻¹ Eu(NO₃)₃. In principle, these data could be used to extract solubility products for Eu(OH)3. However, it is well-known that the solid phase generally contains mixed anions. 73,74 Since in most cases the composition of the solid phase is not accurately known, these data cannot be utilized for solubilities. Only Askel'rud and Ermolenko's⁷³ data (analyzed in section IV.F.3) are free of these objections. Also see the discussion in Gmelin.³¹ The solubility of RE(OH)₃ increases slightly in concentrated base, 187,188 and this was attributed for some REE to reactions of the type $$RE(OH)_3(s) + OH^-(aq) = RE(OH)_4^-(aq)$$ (9) Baes and Mesmer¹⁸⁷ give approximate formation constants for several RE(OH)₄-, but no data are available for Eu. It is unlikely that Eu(OH)₄ forms to any major extent, since the solubility of Gd(OH)3 increases only fourfold in 18.8 mol L⁻¹ NaOH and La(OH)₃ shows even less solubility variation with concentration of base. 188 Yb(OH)₃ shows a much larger solubility change with added base and has a solubility maximum in 14 mol L⁻¹ NaOH. This was attributed to formation of Yb- $(OH)_6^{3-,188}$ and similar reactions probably occur just for the heavier lanthanides Yb and Lu, which can form solid salts with the empirical compositions Na₄RE- $(OH)_{7} \cdot nH_{2}O^{189}$ or $Na_{3}RE(OH)_{6} \cdot nH_{2}O^{190}$ In addition, all of the RE3+ form RE(OH)2+, and most form RE2-(OH)₂⁴⁺ and RE₃(OH)₅⁴⁺ in aqueous solution. ¹⁸⁷ Kragten and Decnop-Weever ^{191,192} have recently studied the precipitation behavior of the elements adjacent to Eu (Sm and Gd) in aqueous perchlorate solutions. Aqueous species observed were RE(OH)²⁺, RE(OH)₂+, RE(OH)₃, and RE₃(OH)₄⁵⁺ for freshly precipitated solutions. Many of the above species may disappear upon aging, which will cause the hydroxide solubility to vary with time. Pershin¹⁹³ monitored pH changes of Eu(III) solutions with aging. The first hydrolysis of Eu³⁺ in aqueous solution $$Eu^{3+}(aq) + H_2O(l) = Eu(OH)^{2+}(aq) + H^+(aq)$$ (10) has been studied a number of times. $^{194-200}$ There is much less information for the second step 199,201 $$Eu(OH)^{2+}(aq) + H_2O(l) = Eu(OH)_2^{+}(aq) + H^{+}(aq)$$ (11) These experimental data will be discussed in section IV.G.1. #### C. General Comments on Aqueous Complex **Formation** Although RE3+ tend to form weaker complexes with anions than many transition metals, they do form complexes with nearly every anion and, in some cases, these complexes are quite strong. Direct evidence for this comes from polarographic measurements. 202-205 Half-wave potentials have been measured in a variety of media including aqueous solutions of Cl⁻, Br⁻, I⁻, NO₃⁻, SO₄²⁻, SCN⁻, CH₃COO⁻, and EDTA. All of these anions affect the half-wave potential for the Eu(III)/ Eu(II) reduction; the reduction curves are shifted different amounts for different anions, and all of them are shifted relative to the presumably weakly complexing ClO₄ media. Weaker complexes such as with Cl-, Br-, I, NO3, and SCN shift the half-wave potentials to less negative values, whereas stronger complexes such as with SO₄²⁻ and CH₃COO⁻ generally shift the curve to more negative values. The relative shifts depend on the strength of these complexes for both Eu(III) and Eu(II). Some of these complexes will be discussed in the following sections. # D. Aqueous Complexes of Eu $^{3+}$ with Ci $^-$, Br $^-$, and I $^-$ Aqueous complexes of Eu³⁺ with Cl⁻, Br⁻, and I⁻ will be discussed together since they have similar complex formation chemistry and they all form fairly soluble hydrated salts. The dominant if not entire mode of complex formation in these solutions is outer-sphere. Evidence for this includes the small negative enthalpy and the small positive entropy²⁰⁶ of complex formation of EuCl²⁺ (but much more negative enthalpy values were reported by other workers²⁰⁷), the similarity of series trends with ionic radius for thermodynamic and transport properties of aqueous rare earth chlorides at high concentrations to those at low concentrations, 161,162,166,169 and the absence of major changes in the RE3+ absorption spectra with increasing Cl⁻ concentration.^{208a} Absorption and luminescence spectra confirm that EuBr²⁺ complexes are also outer-sphere. 175c The I-salt has been studied much less, but since its stability constants are similar to those of the chloride and bromide salts, its chemistry should also be similar. The absence of excess sound absorption in \mathbf{REBr}_3 and \mathbf{REI}_3 solutions indicates the absence of strong complex formation.^{208b} Fukasawa et al.²⁰⁹ calculated approximate outer- Fukasawa et al.²⁰⁹ calculated approximate outersphere stability constants for RECl²⁺ and REBr²⁺ theoretically, which were only slightly smaller than the observed total constants; this implies the dominant complex formation mode is outer-sphere. A conflicting claim has been made by Breen and Horrocks²¹⁰ using luminescence excitation spectroscopy. They reported an inner-sphere formation constant for EuCl²⁺ that is only slightly smaller than the total complex formation constant (inner- plus outer-sphere) reported by others, which implies the dominant complex formation mode is inner-sphere. Tanaka and Yamashita,²¹¹ however, used the same approach and concluded that inner-sphere complex formation was unlikely. There are a large number of studies that report stability constants for Cl^- , Br^- , or I^- complexes of Eu^{3+} . $^{206-208a,209,210,212-216}$ Some derive both the first and second constants, whereas others report only the first K value from their data. The calculated value of the first constant is sensitive to whether a second complex is assumed to form. This will be discussed in more detail in the
thermodynamic section. In addition, a number of thermodynamic and transport properties are available for aqueous EuCl₃ solutions (and most other RECl₃) at 298 K from low concentrations to saturation. These properties are densities, ¹⁶¹ enthalpies of dilution, ¹⁶² activity coefficients, ¹⁶⁹ heat capacities, ²¹⁷ electrical conductances, ²¹⁸ and relative viscosities. ²¹⁹ Adiabatic compressibilities are also available from low to moderate concentrations. ^{220,221} ## E. Aqueous Complexes of Eu³⁺ with F⁻ REF₃ are very much less soluble than the other RE halides in aqueous solution, their REF²⁺ formation constants are about 10³ larger than for other REX²⁺, ^{207,222,223a,b} and their enthalpies and entropies of complex formation are large and positive. ²²² This suggests that RE³⁺-F⁻ complexes are largely innersphere, in contrast to the other halides, which are predominantly outer-sphere. Moulin et al., ²⁰⁷ in contrast, found the enthalpies of formation of REF²⁺ to be negative. However, the positive enthalpies from direct calorimetry should be more reliable. ²²² A mixed-anion aqueous species, EuF(OH)₂, has recently been reported. ²²⁴ #### F. Aqueous RE(CIO₄)₃ Solutions Most of the available information suggests that RE^{3+} and ClO_4^- ions interact very little in aqueous solution, although they obviously must form water-sharing ion pairs by saturation (4.60–4.76 mol kg⁻¹ at 298 K). ¹⁶³ The crystal structures of La(ClO₄)₃·6H₂O, Tb(ClO₄)₃·6H₂O, and Er(ClO₄)₃·6H₂O have been reported. ²²⁵ Each RE^{3+} ion is surrounded by a cubic close-packed $RE(H_2O)_6^{3+}$ arrangement with ClO_4^- occupying all octahedral and tetrahedral holes. Two studies report Eu(ClO₄)²⁺ formation constants. Fluorescence lifetime measurements yield 24 mol⁻¹ L,²²⁶ whereas electromigration velocity measurements yield $0.6 \pm 0.1 \; \text{mol}^{-1} \; \text{L}.^{227}$ These values are so discrepant that they will not be used to extract thermodynamic data. Another fluorescence lifetime study, ²²⁸ unlike that of Giuliani and Donohue, ²²⁶ found no significant effect of ClO₄⁻ on Eu³⁺ fluorescence lifetime, so the larger stability constant is suspect. Bünzli and Yersin²²⁸ also concluded that Eu(ClO₄)²⁺ ion pairs were outer sphere. Breen and Horrocks²¹⁰ and Tanaka and Yamashita²¹¹ Breen and Horrocks²¹⁰ and Tanaka and Yamashita²¹¹ suggested that these outer-sphere ClO₄⁻ ion pairs actually cause the inner-sphere hydration number of Eu³⁺ to increase at high ClO₄⁻ concentrations. However, since transport properties^{163,164} for stoichiometric RE(ClO₄)₃ solutions still seem to exhibit the hydration number decrease even at saturation, the very high ClO₄⁻ to RE³⁺ ratio in the fluorescence studies may be the critical factor for altering the inner-sphere hydration number. Thermodynamic and transport data have been reported at 298 K for aqueous rare earth perchlorate solutions, including Eu(ClO₄)₃. They are densities, ²²⁹ heat capacities, ²³⁰ and viscosities ¹⁶⁴ (all from low concentrations to saturation), and adiabatic compressibilities ^{220,231} (to moderate concentrations). Several other properties have been measured for a number of other lanthanides, so that properties for Eu(ClO₄)₃ can be accurately estimated by interpolation. They include activity coefficients, ^{170,232} enthalpies of dilution, ²³³ and electrical conductances. ¹⁶³ # G. Aqueous Eu³⁺ Halates: ClO₃-, BrO₃-, and IO₃- Stability constant data have been reported for aqueous Eu³⁺ with ClO₃-, BrO₃-, and IO₃-, ²³⁴⁻²³⁶ and are concordant to a factor of 2 or 3. Reaction enthalpies are discordant: enthalpies of formation of Eu(ClO₃)²⁺ have been reported to be -21^{234} and 0 kJ mol⁻¹, ²³⁶ and for Eu(IO₃)²⁺ are -11^{234} and +11 kJ mol⁻¹, ²³⁵ The discrepancies are partly resolved by direct enthalpy of complex formation measurements; this leads to the claim that the IO₃- complex is predominantly inner sphere whereas the ClO₃- and BrO₃- complexes are predominantly outer sphere. ²³⁷ Crystal structure data for bromates show RE³⁺ surrounded by 9 H₂O's, ¹⁵⁸ which is consistent with an outer-sphere assignment for their aqueous complexes. Solubility data for Eu(IO₃)₃ at 298.15 K are in remarkably good agreement, 7.8–8.2 × 10^{-4} mol L⁻¹, ¹⁵⁵, ¹⁵⁶, ¹⁶⁷, ²³⁸ # H. Aqueous RE $^{3+}$ Complexes with $\rm H_2PO_4^-,$ $\rm H_2PO_2^-,$ and $\rm P_3O_{10}^{5-}$ Addition of phosphoric acid to RE³⁺ solutions causes much less RE³⁺ to be absorbed on ion-exchange resins than when only perchloric acid is present. This suggests that complexes form, although they are weaker than for trivalent ions of Al, Fe, Ti, In, and Sc.²³⁹ Formation constants of RE(H₂PO₄)²⁺ are available for Ce³⁺, Pm³⁺, and Y³⁺ at I=0.2 mol L⁻¹;²⁴⁰ since their formation constants vary only by a factor of 2 a rough estimate could be made for Eu³⁺. Similarly, a stability constant for Eu(H₂PO₂)²⁺ has been published.^{241a} Nieuwenhuizen et al.^{241b} used ¹⁷O NMR to investigate complex formation between RE³⁺ and sodium triphosphate. Hydrated RE(P₃O₁₀)₂⁷⁻ formed in each case. ## I. Aqueous Eu³⁺ Carbonate Complexes Freezing point depression data for RE³⁺ in the presence of excess carbonate²⁴² indicate the formation of RE(CO₃)₄⁵⁻. Stability constant data are available for Eu(CO₃)⁺ and Eu(CO₃)₂⁻ at an ionic strength of 1 mol L⁻¹ ²⁴³ and for Eu(CO₃)₄⁵⁻ at I = 2.5 mol L⁻¹.²⁴⁴ ### J. Eu³⁺ Sulfate Complexes Stability constant data are available for sulfate complexes of Eu $^{3+}$ from a variety of methods. $^{155,214,215,241a,245-249}$ Most of these studies are in reasonable agreement, but a few of the earlier studies are less accurate due to the neglect of $\mathrm{Eu}(\mathrm{SO_4})_2^-$ when calculating stability constants for $\mathrm{Eu}(\mathrm{SO_4})^+$. Both enthalpy and entropy of complex formation are moderately to fairly large and positive. $^{246-248,250}$ These enthalpy and entropy values, together with the moderately large stability constants, suggest that sulfate complexes could be predominantly inner sphere rather than outer sphere. Other evidence supporting the presence of extensive complex formation includes excess sound absorption maxima 251 and low values for electrical conductances. 149,252a Aqueous complexes of the type $RE(S_2O_3)_3^{3-}$ and $RE(S_2O_3)_4^{5-}$ have been reported for several RE in the presence of excess thiosulfate ions.^{252b} ### K. Eu³⁺ Nitrate Complexes Eu³⁺ nitrate solutions have properties that are intermediate in behavior between the weakly complexed chlorides and perchlorates and the more strongly complexed sulfates. This suggests that there may be a mixture of inner- and outer-sphere nitrate complexes present. On the basis of small negative enthalpies and entropies of formation, Choppin and Strazik²⁵³ concluded that the dominant complexes were outer sphere. In contrast, Breen and Horrocks' fluorescence lifetime measurements²¹⁰ were interpreted as indicating the dominant complexes were inner sphere. Other spectroscopic measurements²⁵⁴ were used to claim that inner-sphere complexes form only for the excited ⁵D₀ state of Eu³⁺ but not for the ground state. Crystal structures are known for several hydrated RE(NO₃)₃·6H₂O, and all have three NO₃ ions bound to the RE by two oxygens and also four or five directly coordinated H₂O's. 140 This indicates that some inner-sphere complexes could well form in their solutions. Many properties of aqueous $RE(NO_3)_3$ show large differences from the weakly complexed Cl^- and ClO_4^- salts, and this indicates that NO_3^- solutions are more extensively and also probably more strongly complexed. Water activities of $RE(NO_3)_3$ solutions 255,256 are much higher than for the Cl^- and ClO_4^- series, and cation hydration numbers from adiabatic compressibilities 220,257 are much lower. In addition, adding NO_3^- ions to RE^{3+} solutions causes large shifts in the water NMR frequency. 173 All of these effects suggest that significant amounts of bound water are liberated by complex formation. Also, electrical conductance data are lower than expected for a highly dissociated salt. 258 Fluorescence (line) spectra measurements²⁵⁹ for aqueous Eu(NO₃)₃ solutions indicate a constant number of lines above about 0.01 mol L⁻¹, but at lower concentrations the nitrate solution spectra changes and approaches that of chloride solutions. This apparently indicates that inner-sphere nitrate complexes dissociate to form outer-sphere complexes or uncomplexed solutions at lower concentrations. There are numerous studies 207,210,212,215,216,253,254,260,261 of the complex formation constants of Eu nitrates. They indicate that both Eu(NO₃)²⁺ and Eu(NO₃)₂+ form in aqueous solutions. However, when large amounts of HNO₃ are present, RE(NO₃)₃·HNO₃ and RE(NO₃)₃·3HNO₃ can apparently form. 262 Pitzer et al.²⁶³ have compared and correlated published thermodynamic data for aqueous RE³⁺ salts with Cl⁻, ClO₄⁻, and NO₃⁻ anions, and Onstott et al.²⁶⁴ discussed the thermodynamics of crystallization for these same salts. # L. Aqueous Eu²⁺ Sm, Eu, Tm, and Yb can be reduced to the +2 state in aqueous solution by chemical, electrochemical, ²⁶ or electron-beam pulse radiolysis. ²⁶⁵ Of these, only Eu²⁺ is "sufficiently stable" to be readily characterized by standard electrochemical methods. However, Eu²⁺ is gradually oxidized to Eu³⁺ by atmospheric air. This oxidation causes changes with time in the electrical conductances for EuCl₂ and EuI₂ solutions. ²⁶⁶ A number of redox potential measurements are available, which will be used below to yield Gibbs en- ergy data for the Eu²⁺ ion. All redox potentials cited in this paper are reduction potentials relative to the normal hydrogen electrode (NHE). McCoy²⁶⁷ reported the Eu³⁺/Eu²⁺ reduction potential to be -0.43 V in formic acid, and Holleck²⁶⁸ obtained -0.49 V in chloride solutions. Eu³⁺ forms complexes (and, presumably, Eu²⁺ also) with almost any ion except possibly ClO₄, so potentials in these media do not yield results for the aquo ions. Macero et al.²⁶⁹
studied formate complexes and concluded that correction of McCoy's data²⁶⁷ for complex formation gives -0.36 V for the aquo ion case. This value agrees with the majority of potential measurements in ClO₄ solutions, -0.35 to -0.38 V.^{202,270-273} Three studies in Cl⁻ media also fall in this range.^{204,274,275} which suggests a compensating effect for the weak Eu³⁺ and Eu2+ chloride complexes. However, Shul'gin and Koz'min²⁷⁶ obtained -0.428 V for EuCl₃, which suggests they had problems with their liquid junction potential. Older enthalpy of solution data for EuCl₂ and for EuO in aqueous HCl could be used to yield enthalpy of formation data for the Eu²⁺ ion. Unfortunately, these results show considerable variation due to oxidation problems and to complex reaction mechanisms. Morss and Haug performed new experiments²⁷⁵ and very carefully reanalyzed previous literature data.^{275,277} They produced a very plausible resolution of these problems. These data will be discussed in Section IV.D. #### IV. Thermodynamic Data #### A. General Comments This section is concerned with the analysis of thermodynamic data for aqueous species and for the pure compounds discussed previously. In those cases where data of sufficient quality are available, values of thermodynamic quantities are recommended. Solid compounds with evaluated thermodynamic data are (in addition to Eu(c)): EuO, Eu₂O₃, Eu₃O₄, EuS, EuCl₂, EuCl₃, EuBr₃, EuOCl, Eu(OH)₃, Eu(OH)₂Cl, Eu(OH)_{2.5}Cl_{0.5}, EuCl₃·6H₂O, EuF₃·0.5H₂O, Eu₂(SO₄)₃·8H₂O, EuSO₄, Eu(NO₃)₃·6H₂O, Eu₂(CO₃)₃·3H₂O, Eu₂(CO₃)₃, Eu(BrO₃)₃·9H₂O, and Eu(IO₃)₃·2H₂O. Aqueous species evaluated are Eu²⁺, Eu³⁺, and aqueous complexes of Eu³⁺ with OH⁻, F⁻, Cl⁻, Br⁻, NO₃⁻, SO₄²⁻, BrO₃⁻, IO₃⁻, and CO₃²⁻. Other systems lacking all or part of the required data are also considered, and recommendations are made as to what needs to be measured or remeasured. In the following sections, thermodynamic data are evaluated mainly by properties, such as entropies, stability constants, etc. However, there is one major exception that concerns EuO(c), Eu₂O₃(c), EuCl₂(c), EuCl₃(c), Eu²⁺(aq), and Eu³⁺(aq). These data are interrelated through enthalpies of solution (Eu, EuO, Eu₂O₃ in aqueous HCl; EuCl₃ and EuCl₂ in acidified H₂O), combustion enthalpies of Eu and EuO, and Eu³⁺/Eu²⁺ redox equilibria. Thus they will be evaluated together and appropriately averaged. Two previous evaluations of data for these oxides, chlorides, and aquo ions are worthy of note: Morss and Haug's²⁷⁵ careful evaluation of experimental data for Eu that resolves many earlier discrepancies, and Morss' later evaluation²⁷⁷ for all the lanthanides. Another important paper is Nugent et al.'s correlation²⁷⁸ of redox potentials with spectroscopic properties. In all of the following sections, calculations for Eu species and compounds have been made thermodynamically consistent whenever possible. Thus our reported results generally differ slightly from values given in the cited literature. Thermodynamic data for HCl and $\rm H_2O$ in aqueous HCl were taken from NBS technical note 270-3²⁷⁹ as reanalyzed by Morss²⁷⁷ and for most other (non Eu) compounds from the 1977 CO-DATA tables. Values for oxyanions not in CODATA and for $\rm H_2O_2(aq)$ are from the NBS technical note 270-3.²⁷⁹ # B. Entropies and Relative Enthalples of Solid Compounds #### 1. Eu Metal Lounasmaa reported heat capacity data for Eu(c) from 0.36 to 4.03 K²⁸⁰ and from 3.02 to 24.76 K,³⁹ Krusius et al. from 0.03 to 0.8 K,281 Teaney and Moruzzi from 10.66 to 273.03 K,36 Gerstein et al. from 5.06 to 323.60 K,35 and Polovov and Maistrenko from 80 to 850 K. 282 Two studies found a heat capacity anomaly at 16 ${ m K}^{36,39}$ that was absent from a later study. ³⁵ The studies with the 16 K anomaly and two others ^{280,281} had obtained their Eu(c) from the same supplier, and it may have contained a second-phase hydride or some other unknown impurity at lower temperatures.³⁶ Since Gerstein et al.'s results³⁵ seem to be the more accurate they were accepted (they also ran a second sample that was probably of lower purity, but which gave results in fairly reasonable agreement at room temperature). Best values of the entropies and heat capacities are $S^{\circ}_{298.15}(\text{Eu}(c)) = 77.81 \text{ J K}^{-1} \text{ mol}^{-1} \text{ and } C_{p,298.15}(\text{Eu}(c))$ = $27.65 \text{ J K}^{-1} \text{ mol}^{-1}$. Polovov and Maistrenko²⁸² only presented their data graphically so entropies cannot be derived. High-temperature data for both Eu crystal and gas are required for analyzing high-temperature decomposition pressures. Berg et al.⁴² performed relative enthalpy measurements for Eu up to 1373 K. These data were represented by the published equations $(T \text{ in } K)^{21,42}$ $$\begin{split} H_T - H_{273.15} &= \\ 24.55(T - 273.15) + 4.289 \times 10^{-3}(T^2 - 273.15^2) \\ 273 &\leq T \leq 503 \ (12) \end{split}$$ $$H_T - H_{273.15} &= \\ 40.50(T - 273.15) - 1.979 \times 10^{-2}(T^2 - 273.15^2) + \\ 1.255 \times 10^{-5}(T^3 - 273.15^3) - 665 \\ 503 &\leq T \leq 1090 \ (13) \end{split}$$ $$H_T - H_{273.15} &= 38.12(T - 273.15) + 4335 \\ 1090 &\leq T \leq 1373 \ (14) \end{split}$$ Reported units were converted to J $\mathrm{mol^{-1}}$ by us. Maximum errors are about 1.5 kJ $\mathrm{mol^{-1}}$ at higher temperature. A thermal anomaly at 503 K was attributed by them to a possible polymorphic transformation. ⁴² The third equation is for liquid Eu. These equations give an enthalpy of fusion of 9.1 ± 0.2 kJ $\mathrm{mol^{-1}}$ and an enthalpy of transition of 57 ± 84 J $\mathrm{mol^{-1}}$ at the transition temperature of 503 K. ²¹ This alleged polymorphic transition may or may not be real; its enthalpy of transition is so uncertain as to be doubtful. Polovov and Maistrenko did not observe this transition but found a λ -like anomaly around 765 K. ²⁸² Stull and Sinke ²⁸³ reported ideal gas thermodynamic values of $S^{\circ}_{298.15}$ = 188.7 J K⁻¹ mol⁻¹ and $C_{p,298.15}$ = 20.8 J K⁻¹ mol⁻¹. #### 2. EuO and EuS Teaney and Moruzzi³⁶ reported heat capacities for EuO powder from 19.37 to 299.25 K and for EuS powder from 9.61 to 285.27 K. McMasters et al.²⁸⁴ made relative enthalpy measurements by drop calorimetry (relative to 298.15 K) from 419 to 1724 K for EuO and from 404 to 1605 K for EuS. McMasters et al. combined these two sources of thermal data to calculate $S^{\circ}_{298.15}(\text{EuO(s)}) = 83.64 \text{ J K}^{-1} \text{ mol}^{-1}$, $C_{p,298.15}(\text{EuO(s)}) = 48.74 \text{ J K}^{-1} \text{ mol}^{-1}$, $S^{\circ}_{298.15}(\text{EuS(s)}) = 95.77 \text{ J K}^{-1} \text{ mol}^{-1}$, and $C_{p,298.15}(\text{EuS(s)}) = 50.96 \text{ J K}^{-1} \text{ mol}^{-1}$. Their relative enthalpy equations were converted to J mol⁻¹ $$H_T - H_{298.15} = -14239 + 46.714T + 3.6100 \times 10^{-3}T^2$$ (15) for EuO, and $$H_T - H_{298.15} = -14123 + 46.268T + 4.1497 \times 10^{-3}T^2$$ (16) for EuS. Uncertainties are about 500 J mol⁻¹. #### 3. EuCl₃, EuBr₃, and Eu(OH)₃ Sommers and Westrum⁷⁷ reported heat capacity data for EuCl₃(c) from 4.95 to 346.44 K, Deline et al. ^{99g} for EuBr₃(c) from 5.18 to 338.08 K, and Chirico and Westrum²⁸⁵ for Eu(OH)₃ from 4.99 to 346.69 K. These data yield $S^{\circ}_{298.15}(\text{EuCl}_{3}(\text{s})) = 144.1 \text{ J K}^{-1} \text{ mol}^{-1}$, $C_{p,298.15}(\text{EuCl}_{3}(\text{s})) = 107.0 \text{ J K}^{-1} \text{ mol}^{-1}$, $S^{\circ}_{298.15}(\text{EuBr}_{3}(\text{c})) = 182.8 \text{ J K}^{-1} \text{ mol}^{-1}$, $C_{p,298.15}(\text{EuBr}_{3}(\text{c})) = 110.6 \text{ J K}^{-1} \text{ mol}^{-1}$, $S^{\circ}_{298.15}(\text{Eu}(\text{OH})_{3}(\text{s})) = 119.9 \text{ J K}^{-1} \text{ mol}^{-1}$, and $C_{p,298.15}(\text{Eu}(\text{OH})_{3}(\text{c})) = 122.6 \text{ J K}^{-1} \text{ mol}^{-1}$. The enthalpy of fusion of EuCl₃ was reported to be 51.0 \pm 2.1 kJ mol⁻¹.⁷⁹ ### 4. Eu₂O₃ There is no calorimetrically determined entropy for Eu_2O_3 , but since it is an important substance it is necessary to estimate its value. The most popular value is Westrum's estimate of 146 J K⁻¹ mol⁻¹. However, we prefer to estimate the entropy of cubic Eu_2O_3 by comparison of REE oxides with their corresponding hydroxides and chlorides. $^{77,285,287-291}$ Differences between the entropy of REX₃ (X = OHor Cl⁻) and RE₂O₃ can be represented by $$2S^{\circ}_{298.15}(REX_3(s)) - S^{\circ}_{298.15}(RE_2O_3) = A$$ (17) for various RE in each series. If A is roughly constant for each series, then its value can be used to estimate the entropy of Eu₂O₃ from the Eu(OH)₃ and EuCl₃ entropies. Although La₂O₃, Pr₂O₃, and Nd₂O₃ have a different structure than Eu₂O₃ and other RE₂O₃, the effect of lattice entropy differences on A should be small enough that data for lighter lanthanides can be averaged with the heavier lanthanides. Data for X = OH-yield $A = 103.3 \pm 2.6$ J K⁻¹ mol⁻¹, so $S^{\circ}_{298.15}$ (Eu₂O₃(s)) = 136.5 \pm 2.6 J K⁻¹ mol⁻¹. Similarly, for X = Cl⁻, $A = 149.2 \pm 2.0$ J K⁻¹ mol⁻¹, so $S^{\circ}_{298.15}$ (Eu₂O₃(s)) = 139.1 \pm 2.0 J K⁻¹ mol⁻¹. Our best estimate is then the average of 137.8 \pm 2.3 J K⁻¹ mol⁻¹ for cubic Eu₂O₃. High-temperature relative enthalpy (drop calorimetry) data are available for cubic Eu₂O₃ (relative to 298.15 K) up to 1350 and 1371 K and for the monoclinic form up to 1802 and 1589 K. 292,293 Cubic Eu₂O₃ is stable below about 1370 K and monoclinic Eu₂O₃ at higher temperatures, but their transformation is so slow below 1370 K that both forms can be studied. Data for cubic Eu₂O₃ are in excellent agreement and for monoclinic Eu₂O₃ are in fairly reasonable agreement. We accept Holley et al.'s²¹ least-squares equations (converted to J mol⁻¹). For cubic Eu₂O₃ $$H_T - H_{298.15} = 136.9(T - 298.15) + 7.196 \times 10^{-3}(T^2 - 298.15^2) + 1.556 \times 10^6 \left(\frac{1}{T} - \frac{1}{298.15}\right)$$ $298 \le T \le 1371 \text{ K} (18)$ For monoclinic Eu₂O₃ $$\begin{split} H_T - H_{298.15} &= 133.8(T - 298.15) + 7.866 \times \\ 10^{-3}(T^2 - 298.15)^2 +
1.728 \times 10^6 \left(\frac{1}{T} - \frac{1}{298.15}\right) \\ &298 \leq T \leq 895 \text{ K (19)} \end{split}$$ $$H_T - H_{298.15} = 132.2(T - 298.15) + 7.866 \times 10^{-3}(T^2 - 298.15^2) - 2498 \times 895 \le T \le 1800 \text{ K (20)}$$ The uncertainty in $H_T-H_{298.15}$ is about $10^3~\mathrm{J~mol^{-1}}$ at $1400~\mathrm{K}$ and $3\times10^3~\mathrm{J~mol^{-1}}$ at $2000~\mathrm{K}$. There is a minor thermal anomaly for monoclinic Eu₂O₃ at 895 K with a transformation enthalpy of $423\pm268~\mathrm{J~mol^{-1}}$. Heat capacities from differential scanning calorimetry²⁹⁴ are as much as 15 J K⁻¹ mol⁻¹ lower and so were rejected. #### 5. EuCl₃·6H₂O Entropy data are also required for EuCl $_3$ ·6H $_2$ O but, unfortunately, only the heat capacity at 298.15 K, $C_{p,298.15} = 366.9 \ \mathrm{J} \ \mathrm{K}^{-1} \ \mathrm{mol}^{-1}$, is available. 175a However, data are available for several other RECl $_3$ ·6H $_2$ O, and it is possible to obtain their lattice entropy by subtracting off the "magnetic" peaks. Hinchey and Cobble. 175a found that the lattice entropy divided by the heat capacity of the crystal at 298 K was 1.09–1.10 for RECl $_3$ ·6H $_2$ O. This yields the estimate of $S^{\circ}_{298.15}$ -(EuCl $_3$ ·6H $_2$ O(c)) = (366.9)(1.095) + 9.33 = 411.1 J K $^{-1}$ mol $^{-1}$. The second term is the electronic contribution to the entropy. Interpolation of lattice heat capacities for RECl $_3$ ·6H $_2$ O and addition of the electronic term give an estimate of 407.1 J K $^{-1}$ mol $^{-1}$. The mean of 409.1 J K $^{-1}$ mol $^{-1}$ is accepted and is probably reliable to 2–3 J K $^{-1}$ mol $^{-1}$. #### 6. Eu₃O₄, EuOCl, and EuCl₂ High-temperature data are available for the decomposition of Eu₃O₄ and EuOCl and for the sublimation of EuCl₂. Entropies for these compounds are required to further utilize these data, and no direct experimental values are available. Consequently, it is necessary to estimate them. McMasters et al.²⁸⁴ noted that the entropy of Fe₃O₄ is less than the sum for FeO and Fe₂O₃. They thus estimated that $S^{\circ}_{298.15}(\text{Eu}_3\text{O}_4) = 0.99$ -[$S^{\circ}_{298.15}(\text{Eu}_0) + S^{\circ}_{298.15}(\text{Eu}_2\text{O}_3)$]. Recalculation to our recommended values gives $S^{\circ}_{298.15}(\text{Eu}_3\text{O}_4) = 0.99(83.64 + 137.8) = 219.2 \pm 3.0 \text{ J K}^{-1} \text{ mol}^{-1}$. Haschke and Eick^{57a} estimated an entropy of 205 J K⁻¹ mol⁻¹ using the sum of lattice and electronic terms and $203.3 \pm 10.9 \text{ J K}^{-1}$ mol⁻¹ from an approximate second-law extrapolation of their decomposition pressure measurements. The average of $209.2 \pm 8.8 \text{ J K}^{-1} \text{ mol}^{-1}$ is our recommended value for Eu₃O₄. Hariharan and Eick¹¹¹ estimated $S^{\circ}_{298.15}(\text{EuOCl(s)})$ = $102.5 \pm 4.2 \text{ J K}^{-1} \text{ mol}^{-1}$ from various additivity schemes and $101.1 \pm 3.1 \text{ J K}^{-1} \text{ mol}^{-1}$ from an approximate third-law extrapolation of their decomposition pressures; these values have been made consistent with our new S° for Eu₂O₃ and the EuCl₂ value given below. The recommended value is the average of $101.8 \pm 3.7 \text{ J K}^{-1} \text{ mol}^{-1}$ for EuOCl. Hariharan and Eick⁹⁴ estimated that $S^{\circ}_{298.15} = 144.3$ J K⁻¹ mol⁻¹ for solid EuCl₂ from various estimation schemes and 137.7 J K⁻¹ mol⁻¹ from an approximate third-law extrapolation of their sublimation pressures. Their average value is recommended: $S^{\circ}_{298.15}(\text{EuCl}_2(s)) = 141.0 \pm 3.3 \text{ J K}^{-1} \text{ mol}^{-1}$. # C. Enthalpies and Glbbs Energles for EuS(s) and Comments on $Eu_2O_2S(s)/Eu_2O_2SO_4(s)$ Thermal decomposition of EuS(s) proceeds mainly by formation of Eu(g) and an equilibrium mixture of S(g) and S₂(g) around 2000 K. Below this temperature some sublimation of EuS can occur, and above this temperature EuS₂(g), Eu₂S(g), and Eu₂S₂(g) can also form, as discussed earlier. Here we are concerned only with decomposition to the elements since it yields enthalpies of formation for EuS(s). Note that these decomposition pressure measurements yield the enthalpy of formation from the gaseous elements, which must be converted to the solid elements for $\Delta H^{\circ}_{\text{f,298,15}}$ data. The CODATA entropy of 32.05 J K⁻¹ mol⁻¹ was used for rhombohedral sulfur at 298.15 K. Since Kaldis and Peteler²⁹⁶ concluded that their earlier vapor pressure study^{118a} was in error, it is not considered further. Available decomposition pressure data for EuS extend from about 1500 to 2500 K, but most measurements are between 1800 and 2400 K.60,114-116,118a,120,296,297 Thus most of the data are above the EuS(s) drop calorimetry data range (maximum of 1605 K) and all are above the Eu(c) data (maximum of 1373 K).42 We thus made no attempt to recalculate the literature high-temperature atomization enthalpies to our best values of thermal data for Eu and EuS(s) since an extrapolation outside the temperature ranges of some of the necessary data is required anyway, the enthalpy corrections are very small, and several sets of data 114,120,297 do not provide enough details to allow recalculation. McMasters et al. ²⁸⁴ did third-law extrapolations of Hariharan and Eick's¹¹⁶ results and Kaldis and Simanovski's unpublished results, which we revise slightly to $\Delta H^{\circ}_{f,298.15}(\text{EuS(s)}) = -448.9 \pm 9.6$ and 440.5 ± 3.3 kJ mol⁻¹, respectively. Kaldis and Peteler's²⁹⁶ results yield -443.0 ± 2.1 kJ mol⁻¹, Nagai et al. ¹¹⁴ obtained -472.7 ± 18.8 kJ mol⁻¹, Fenochka and Gordienko^{120,297} obtained -402.0 ± 9.2 kJ mol⁻¹, and Smoes et al. ⁶⁰ obtained -456.8 ± 10.9 kJ mol⁻¹. Averaging the four values in best agreement ^{60,284,296} gives the recommended result of $\Delta H^{\circ}_{f,298.15}(\text{EuS(s)}) = -447.3 \pm 7.2$ kJ mol⁻¹. These enthalpies of formation were calculated from reported atomization enthalpies but have been adjusted to our recommended enthalpy of sublimation of Eu(g) and the CODATA values for S(rh) and S(g). The entropy of formation of EuS(s) is given by $$\Delta S^{\circ}_{f,298.15}(\text{EuS}(s)) = S^{\circ}_{298.15}(\text{EuS}(s)) - S^{\circ}_{298.15}(\text{S(rh)}) - S^{\circ}_{298.15}(\text{Eu(c)})$$ (21) Our recommended values thus yield $\Delta S^{\circ}_{f,298.15}(EuS(s)) = 95.77 - 32.05 - 77.81 = -14.09 J K^{-1} mol^{-1}$. This yields a standard Gibbs energy of formation of -443.1 ± 7.9 kJ mol⁻¹, assuming an uncertainty of 0.7 J K⁻¹ mol⁻¹ for the formation entropy. Dwivedi and Kay²⁹⁸ investigated the thermodynamics of oxidation of Eu₂O₂S(s) to Eu₂O₂SO₄(s) using oxygen concentration cells, from 1020 to 1320 K. These measurements yield reaction free energies, but there are no independent data for either compound so no Gibbs energies of formation can be derived. # D. Data for Solid EuO, Eu $_2$ O $_3$, EuCl $_2$, EuCl $_3$, and EuCl $_3$ ·6H $_2$ O and for Aqueous Eu $^{2+}$ and Eu $^{3+}$ A variety of compounds and aqueous species are considered together in this section because their data are interrelated. For example, data for EuO are available from combustion with O_2 to form Eu_2O_3 and by dissolution of EuO in HCl to form aquo ions. Eu_2O_3 has been studied by several workers. Huber et al. $\overline{^{299}}$ used combustion of Eu by $O_2(g)$ to obtain an enthalpy of formation of monoclinic Eu₂O₃ of -1648.1 ± 3.8 kJ mol⁻¹. Enthalpies of solution of cubic and monoclinic Eu₂O₃ in 6 mol L⁻¹ HNO₃ gave the enthalpy of transformation of stable cubic to metastable monoclinic Eu_2O_3 as $-18.0 \pm 2.5 \text{ kJ mol}^{-1}$. Stuve³⁰⁰ used enthalpies of solution of Eu(c) and Eu₂O₃(cubic) in 4 mol L⁻¹ HCl to calculate the formation enthalpy of Eu_2O_3 (cubic) to be -1619.1 ± 5.0 kJ mol⁻¹. Yashvili and Gyelesiani³⁰¹ obtained an enthalpy of formation of Eu₂O₃ from dissolution of it and of Eu(c) in aqueous HCl, $-1725.5 \pm 5.1 \text{ kJ mol}^{-1}$. These various studies are in poor agreement, and, in the case of the latter study, the authors admitted that their Eu was of inadequate purity. The source of the problems is easy to see: Eu is a very reactive metal and it readily reacts with atmospheric moisture and oxygen. Thus "pure metal" samples generally contain some oxide and/or hydride, and these impurities are difficult to detect by most standard analytical chemistry methods. Fortunately, the combustion enthalpy of Eu(c) and solution enthalpies of monoclinic and cubic Eu₂O₃ have been reexamined in detail and with care by Fitzgibbon et al.302 Their combustion of Eu(c) by O2 gave an enthalpy of formation of $-1651.0 \pm 3.8 \text{ kJ mol}^{-1}$ for monoclinic Eu₂O₃. Measurements of the enthalpies of solution of Eu and Eu₂O₃ in 4 mol L⁻¹ HCl yield another value of $-1653.2 \pm 3.4 \text{ kJ mol}^{-1}$. Averaging these with earlier results from their laboratory299 yields $\Delta H^{\circ}_{f,298.15}(Eu_2O_3, monoclinic) = -1650.8 \pm 2.6 \text{ kJ mol}^{-1}.$ Combining Fitzgibbon et al.'s³⁰² enthalpy of solution of monoclinic Eu₂O₃ in 6 mol L⁻¹ HCl with Stubblefield et al.'s 303 enthalpy of solution of Eu(c) in this medium yields $-1624.3 \pm 4.3 \text{ kJ mol}^{-1}$, which implies the Eu(c) solution data probably are in error so they were not included in the average. Fitzgibbon et al.³⁰² also did a large number of experiments for the dissolution of cubic and monoclinic Eu_2O_3 in HCl and HNO₃, and consistent results were obtained in both media. They yield an enthalpy of transformation of cubic to monoclinic of $11.1 \pm 1.2 \text{ kJ}$ mol⁻¹. Their earlier negative value²⁹⁹ of this quantity was attributed by them³⁰² to CO_2 and H_2O impurities. Using the newer result³⁰² gives $\Delta H^{\bullet}_{f,298}(Eu_2O_3, \text{cubic})$ $= -1661.9 \pm 3.8 \text{ kJ mol}^{-1}$. The entropy of formation of cubic Eu₂O₃ is given by $\begin{array}{lll} \Delta S^{\circ}_{f,298.15}(Eu_{2}O_{3},\ cubic) &=& S^{\circ}_{298.15}(Eu_{2}O_{3},\ cubic) \\ -2S^{\circ}_{298.15}(Eu(c)) -
(3/2)S^{\circ}_{298.15}(O_{2}(g)) &=& 137.8 - 2(77.81) \\ -1.5(205.04) &=& -325.4 \ \pm \ 3.0 \ J \ K^{-1} \ mol^{-1}. \end{array}$ $\Delta G^{\circ}_{\rm f,298.15}(\rm Eu_2O_3,~cubic) = -1564.9 \pm 4.7~kJ~mol^{-1}.$ Fitzgibbon et al. 302 estimated that $\Delta S = 6.3 \pm 2.1~J~K^{-1}$ mol⁻¹ for the cubic to monoclinic transition. Then, $\Delta S^{\circ}_{f,298,15}(Eu_2O_3, monoclinic) = -319.1 \pm 3.7 \text{ J K}^{-1} \text{ mol}^{-1},$ and $\Delta G^{\circ}_{f,298.15}(Eu_2O_3, monoclinic) = -1555.7 \pm 3.7 \text{ kJ}$ mol^{-1} . Five studies of the enthalpy of solution of Eu(c) in aqueous HCl show large differences. 300-304 Fitzgibbon et al.'s value³⁰² is probably the only reliable one, and only for their results, Huber et al.'s, 299 and Stuve's 300 were the impurity contents of Eu(c) adequately known. Bommer and Hohmann's enthalpy of solution³⁰⁵ of EuCl₃(c) in H₂O is also significantly in error due both to impurities and because adding anhydrous RE chlorides directly to water can give some hydrolysis and formation of hydroxide; thus their reaction may not have solely been dissolution of EuCl₃(c). This hydrolysis problem can be avoided by dissolution of EuCl₃(c) into HCl solutions. 300,306 Data for EuO(s), EuCl₂(s), and Eu²⁺(aq) are also related. Data are available for the dissolution of EuO(s) in aqueous HCl³⁰⁴ and for the combustion of EuO(s) by O₂.³⁰⁷ Enthalpies of solution and of oxidation of aqueous EuCl₂^{275,303,308} are also available. However, especially for EuCl₂,³⁰⁸ there is a considerable variation of the experimental enthalpies with experimental conditions. Morss and Haug,²⁷⁵ in addition to doing new measurements on EuCl₂, reanalyzed literature data. Some discrepancies in previous literature data were due to other workers assuming that Eu²⁺ oxidation in airsaturated HCl proceeded with water formation. In fact, they²⁷⁵ showed that the main reaction was actually $$Eu^{2+}(aq) + H^{+}(aq) + {\binom{1}{2}}O_{2}(aq) = Eu^{3+}(aq) + {\binom{1}{2}}H_{2}O_{2}(aq)$$ (22) Our discussion will be largely based on theirs and will yield only minor revisions in their recommended values. Morss and Haug's²⁷⁵ recalculations yield enthalpies of formation of EuO(s) from Burnett and Cunningham's enthalpies of solution of EuO in O₂-saturated HCl³⁰⁴ (corrected for 2.2% monoclinic Eu₂O₃) of -586.8 kJ mol⁻¹ and a value of -591.5 ± 2.8 kJ mol⁻¹ from Huber and Holley's combustion data,³⁰⁷ after recalculation to our Eu₂O₃ results. McMasters et al.²⁸⁴ reanalyzed Haschke and Eick's⁵³ decomposition pressure data for EuO(s) and obtained a third-law enthalpy of $-599.1 \pm$ 15.9 kJ mol⁻¹. Our recommended value is the average of $\Delta H^{\circ}_{f,298.15}(\text{EuO(s)}) = -592.2 \pm 5.5 \text{ kJ mol}^{-1}$, giving double weight to the more precise combustion data. Using our evaluated entropies yields the entropy of formation of EuO(s) of $\Delta S^{\circ}_{f,298.15}(\text{EuO}(\text{s})) = 83.64 - 77.81 - \frac{1}{2}(205.04) = -96.69 \text{ J K}^{-1} \text{ mol}^{-1}, \text{ and } \Delta G^{\circ}_{f,298.15}(\text{EuO}(\text{s})) = -563.4 \pm 5.7 \text{ kJ mol}^{-1}.$ Morss and Haug²⁷⁵ also combined Fitzgibbon et al.'s302 enthalpy of dissolution data for Eu(c) in HCl Eu(c) + 3HCl (in 4 mol L⁻¹ HCl) = EuCl₃ (in 4 mol L⁻¹ HCl) + $$(^3/_2)$$ H₂(g) (23) and Stuve's³⁰⁰ enthalpy of solution of EuCl₃(s) in 4 mol L⁻¹ HCl to obtain the enthalpy of formation of EuCl₂(s). These data yield $-937.1 \pm 3.6 \text{ kJ mol}^{-1}$, but the error in the enthalpy change for reaction 23 could possibly be larger. They also used the enthalpy of dissolution of monoclinic Eu₂O₃ in 4 mol L⁻¹ HCl³⁰² and Stuve's enthalpy of solution of EuCl₃(s) in this same medium³⁰⁰ to obtain $\Delta H^{\circ}_{f,298.15}(\text{EuCl}_{3}(s))$; we revise their result to $-935.9 \pm 3.3 \text{ kJ mol}^{-1} \text{ using our recommended Eu}_2\text{O}_3$ value. Similarly, we combine Machlan et al.'s³⁰⁶ enthalpy of solution of EuCl₃(s) in 6 mol L⁻¹ HCl with Fitzgibbon et al.'s data³⁰² for dissolution of monoclinic Eu_2O_3 in this same medium to obtain $\Delta H^{\circ}_{f,298.15}$ $(EuCl_3(s)) = -934.2 \pm 4.1 \text{ kJ mol}^{-1}$. The best value of $\Delta H^{\circ}_{f,298.15}(\text{EuCl}_{3}(s)) = -935.8 \pm 4.0 \text{ kJ mol}^{-1} \text{ was ob-}$ tained by averaging these results. The entropy of formation of EuCl₃(s) is $\Delta S^{\circ}_{f,298.15^{-}}$ (EuCl₃(s)) = 144.1 - 77.81 - $^{3}/_{2}$ (222.97) = -268.2 J K⁻¹ mol⁻¹. Thus, $\Delta G^{\circ}_{f,298.15}$ (EuCl₃(c)) = -855.8 ± 4.3 kJ mol^{-1} . The only value of the enthalpy of solution of EuCl₃(s) into dilute HCl is Machlan et al.'s results306 into 0.015 mol L⁻¹ HCl, and it can be approximately extrapolated to infinite dilution to obtain the enthalpy of formation of Eu³⁺. Morss and Haug's calculations²⁷⁵ then give $\Delta H^{\circ}_{f,298.15}(\text{Eu}^{3+}(\text{aq})) = -604.8 \pm 4.2 \text{ kJ mol}^{-1}, \text{ after}$ correction to our revised EuCl₃(s) data. Morss and Haug also studied the oxidation of argon-flushed EuBr₂ solutions with both aqueous Br₂ and liquid Br₂. Their data yield $\Delta H^{\circ}_{f,298,15}(Eu^{3+}(aq)) - \Delta H^{\circ}_{f,298,15}(Eu^{2+}(aq)) = -76.8 \pm 4.2$ and -77.4 ± 8.4 kJ mol⁻¹ by the two different methods. Thus, $\Delta H^{\circ}_{f,298.15}(\mathrm{Eu^{2+}(aq)}) = -527.7$ ± 7.6 kJ mol⁻¹. Previous determinations of these quantities by other workers are considered inaccurate by Morss and Haug.²⁷⁵ Il'ina and Khanaev's^{309a} enthalpy of oxidation of Eu²⁺ was unavailable to us. Two determinations of the enthalpy of solution of EuCl₃· $6H_2O(c)$ into water are in excellent agreement: -36.46 ± 0.03 and -36.69 ± 0.13 kJ mol⁻¹ after extrapolation to infinite dilution. 162,175a Hydrolysis problems are not present for dissolution of the hydrated salt. Karapet'yants et al.'s enthalpy of solution¹²⁸ into 0.239 mol kg⁻¹ HCl yields about -37.9 kJ mol⁻¹, but the correction to infinite dilution in water makes this value less certain than the direct solution into water results. The best value is the average of solution into water, -36.58 \pm 0.13 kJ mol⁻¹. The solution process is given formally $$EuCl_{3}\cdot 6H_{2}O(c) = Eu^{3+}(aq) + 3Cl^{-}(aq) + 6H_{2}O(l)$$ (24) Thus, $\Delta H^{\circ}_{f,298.15}(\text{EuCl}_{3}\cdot 6\text{H}_{2}\text{O}(c)) = 36.58 + (-604.8)$ $3(-167.08) + 6(-285.83) = -2784.5 \pm 4.3 \text{ kJ mol}^{-1}$. The entropy of formation is $\Delta S^{\circ}_{f,298.15}(\text{EuCl}_3 \cdot 6\text{H}_2\text{O})(c)) =$ $409.1 - 77.81 - {}^{3}/{}_{2}(229.97) - 6(130.57) - 3(205.04) = -1412.2 \pm 11.6 \text{ J K}^{-1} \text{ mol}^{-1}$, and $\Delta G^{\circ}_{f,298.15}(\text{EuCl}_{3}\cdot\text{6H}_{2}\text{O})$ (c)) = $-2363.4 \pm 7.8 \text{ kJ mol}^{-1}$. Solubility data are available for EuCl₃·6H₂O in water at 298.15 K. Spedding et al. 161 reported a value of 3.5889 mol kg⁻¹ by direct determination and 3.5839 mol kg⁻¹ by isopiestic equilibration. ¹⁶⁹ Powell's value ^{309b} of 3.621 mol kg⁻¹ is about 1% higher. The two values in agreement were averaged for 3.5864 ± 0.0025 mol kg⁻¹. The activity of $\rm H_2O$, $a_{\rm w}=0.4918\pm0.0004$ and the solute activity coefficient $\gamma_{\pm}=5.221\pm0.013$ for the saturated solution were taken from the revised values reported by Spedding et al., ^{168a} where we assume a 2.5% uncertainty for γ_{\pm} . These results yield the standard Gibbs energy of solution, $\Delta G^{\circ}=-RT\ln{(27m^4\gamma_{\pm}^4a_{\rm w}^6)}=-26.67\pm0.04~\rm kJ~mol^{-1}$. The entropy of solution is thus $-33.25\pm0.57~\rm J~K^{-1}~mol^{-1}$. Mason³¹⁰ also reported activity data for EuCl₃ from 0.20 to 2.08 mol kg⁻¹, but his osmotic coefficients are 0.15–1.5% too high. This is most likely due to low-purity reagents and to hydrolysis when his anhydrous salt was added to water. Kotlyar-Shapirov et al.'s activity data³¹¹ are too scattered to be of any use. The above data for reaction 24 yield the entropy of Eu³+, $S^{\circ}_{298.15}(Eu³^{+}(aq)) = 409.1 - 33.25 - 6(69.95) - 3(56.73) = -214.0 \pm 3.1$ J K⁻¹ mol⁻¹. Then, the entropy of formation is $\Delta S^{\circ}_{f,298.15}(Eu³^{+}(aq)) = -214.0 - 77.81 + 3(65.285) = -96.0 \pm 3.6$ J K⁻¹ mol⁻¹. This last term of 65.285 J K⁻¹ mol⁻¹ is the "entropy" of the electron (= $^{1}/_{2}$ the H₂(g) value) and is required to maintain consistency with the hydrogen ion convention. Thus, $\Delta G^{\circ}_{f,298.15}(Eu³^{+}(aq)) = -576.2 \pm 5.3$ kJ mol⁻¹. Numerous measurements have been made of the aqueous redox potential involving $\mathrm{Eu^{3+}/Eu^{2+}}$, which allow the free energy of formation of $\mathrm{Eu^{2+}}$ to be calculated from the $\mathrm{Eu^{3+}}$ data. There is evidence (discussed earlier) that $\mathrm{Cl^-}$ ions form weak complexes with aqueous $\mathrm{Eu^{3+}}$ and $\mathrm{ClO_4^-}$ ions probably form very weak complexes also. Since the $\mathrm{Eu^{3+}}$ perchlorate stability constant is poorly known and almost nothing is known about these chloride and perchlorate complexes in $\mathrm{Eu^{2+}}$ solutions, the electrode potentials cannot be properly corrected for complex formation. Consequently, we chose an empirical extrapolation, of E vs. (I)^{1/2}, for the data given below. Here E is the reduction potential in volts vs. the normal hydrogen electrode, and I is the ionic strength in mol $\mathrm{L^{-1}}$. McCoy,²⁶⁷ Holleck,²⁶⁸ and Shul'gin and Koz'min²⁷⁶ reported E values in chloride solutions of -0.43 to -0.49 V. However, more recent results are consistently less negative, which suggests that these three studies are in error. McCoy's solutions²⁶⁷ contained formic acid but when corrected for complex formation with Eu³+ yield -0.36~V for Eu³+/Eu²+,²69 which agrees with more recent work. This corrected value, the results of Vlček in $HClO_4$, 202 and eleven other studies $^{203-205,269-275,312}$ were used to obtain the recommended results. The Gierst and Cornelissen³¹² polarographic measurements in various NaClO₄ concentrations yield -0.350 V at
infinite dilution. Morss and Haug's cell measurements²⁷⁵ in dilute HCl yield -0.349 V but show an opposite variation with concentration than Gierst and Cornelissen, 312 and their higher ionic strength value is less negative than all the other studies. However, since these two sets of data both yield -0.35 V when separately extrapolated to infinite dilution, we have more confidence in the results. The other studies were each at one ionic strength, usually 1 mol $\rm L^{-1}$. Based on the reported variations $^{203-205,270-274,312}$ of -0.350 to -0.386 V at I=1mol L^{-1} , we estimate an uncertainty of 0.016 V. Thus, $E^{\circ} = -0.349 \pm 0.016 \text{ V}$ is the best value for this potential. It should be noted that E° values in Cl⁻ solutions tend to be slightly more negative than in ClO₄solutions at the same ionic strength; this may indicate that Eu^{3+} forms stronger complexes with Cl^- than does Eu^{2+} . This potential yields $\Delta G^{\circ}_{\rm rxn} = \Delta G^{\circ}_{\rm f,298.15}({\rm Eu^{2+}(aq)}) - \Delta G^{\circ}_{\rm f,298.15}({\rm Eu^{3+}(aq)}) = 33.7 \pm 1.5 \ {\rm kJ\ mol^{-1}}.$ Then, $\Delta G^{\circ}_{\rm f,298.15}({\rm Eu^{2+}(aq)}) = -542.5 \pm 6.8 \ {\rm kJ\ mol^{-1}}.$ Also, $\Delta S^{\circ}_{\rm f,298.15}({\rm Eu^{2+}(aq)}) = 49.7 \pm 10 \ {\rm J\ K^{-1}\ mol^{-1}},$ so $S^{\circ}_{\rm 298.15}({\rm Eu^{2+}(aq)}) = 49.7 + 77.81 - 2(65.285) = -3.1 \pm 11 \ {\rm J\ K^{-1}\ mol^{-1}}.$ Stubblefield and Eyring³⁰⁸ investigated the dissolution of $EuCl_2(s)$ both in O_2 - and H_2 -saturated HCl solutions. The enthalpy of solution of $EuCl_2(s)$ in O_2 -saturated HCl was about twice as negative as for the H_2 -saturated case, which clearly establishes that the oxygen was causing extensive oxidation. However, results were highly irreproducible in both cases (about 38 kJ mol⁻¹ variation). Stubblefield et al. reinvestigated the solution of EuCl₂(s) in H₂-saturated 6 mol L⁻¹ HCl and obtained enthalpy data about a factor of 10 more reproducible.³⁰³ They obtained evidence for the reaction being oxidation of Eu²⁺(aq) by H⁺(aq) EuCl₂(s) + HCl (in 6 mol L⁻¹ HCl) = EuCl₃ (in 6 mol L⁻¹ HCl) + $$(1/2)$$ H₂(g) (25) Assuming that their reaction was complete, $\Delta H^{\circ}_{\rm f,298.15}(EuCl_2(s)) = -935.7 - 129.3 + 153.5 + 90.8 = -820.8 \pm 5.7~kJ~mol^{-1}$ from these data 303 and from enthalpy of solution of EuCl $_3$ in 6 mol L^{-1} HCl. 306 Morss and Haug²⁷⁵ measured the dissolution enthalpy of EuCl₂(s) in dilute (0.001–0.1 mol L⁻¹) HCl saturated with argon. At these low HCl concentrations, oxidation of Eu²⁺ by H⁺ is much less of a problem. Thus they obtained an enthalpy of solution (corrected to infinite dilution) of -37.7 ± 0.2 kJ mol⁻¹ for the reaction $$EuCl_2(s) =$$ $$Eu^{2+}$$ (in dilute HCl) + 2Cl⁻ (in dilute HCl) (26) Combining these data with the enthalpies of formation of Eu²⁺ and Cl⁻ gives $\Delta H^{\circ}_{f,298.15}(\text{EuCl}_2(\text{s})) = -527.7 + 2(-167.08) + 37.7 = -824.2 \pm 7.8 \text{ kJ mol}^{-1}$. Similar solution measurements for EuCl₂(s) in O₂-saturated 0.1 mol L⁻¹ HCl were shown to occur predominantly by reaction 22; i.e., H₂O₂ is formed.²⁷⁵ However, a smaller fraction could have gone by H₂O formation, so these data will not be used here (note: $\Delta H^{\circ}_{f,298.15}(\text{EuCl}_2(\text{s}))$ from O₂-saturated solution data agrees well with the other two results if reaction 22 is assumed to go to completion). The best value for the enthalpy of formation of EuCl₂(s) is the average of -822.5 ± 6.7 kJ mol⁻¹. Our earlier entropy estimate for EuCl₂(s) yields $\Delta S^{\circ}_{f,298.15^{-}}$ (EuCl₂(s)) = 141.0 - 77.81 - 222.97 = -159.8 \pm 3.8 J K⁻¹ mol⁻¹. Thus our free energy of formation is $\Delta G^{\circ}_{f,298.15}$ (EuCl₂(s)) = -774.8 \pm 7.9 kJ mol⁻¹. Heating EuCl₃(s) high enough to give a significant vapor pressure causes melting, and upon melting EuCl₃ extensively decomposes to EuCl₂. Also, heating EuCl₂ produces predominantly EuCl₂(g) by congruent vaporization. Thus these vaporization data do not directly yield Gibbs energy results for the solid phases. Consequently, solution calorimetry was used to derive most of the above results. However, Polyachenok and Novikov⁸⁸ studied the liquid EuCl₃/EuCl₂ decomposition equilibrium. They used their results to obtain rough values of the enthalpies of formation of EuCl₃(l) (-1008) kJ mol⁻¹) and EuCl₂(l) (-908 kJ mol⁻¹), which are within 10% of the more accurate solid state results discussed above. # E. Thermodynamics of Solid Eu₃O₄, EuOCl, EuBr₃, EuBr₂, and EuI₂ Hashcke and Eick^{57a} studied the decomposition of Eu₃O₄(s) between 1604 and 2016 K by target collection–mass spectrometry. By far the dominant decomposition reaction was the formation of monoclinic Eu₂O₃ and Eu(g) by eq 3. Using estimated heat capacities, they obtained the enthalpy of formation of Eu₃O₄. Revising their calculations to our recommended results for Eu₂O₃(monoclinic) and Eu(g) gives $\Delta H^{o}_{f,298.15}$ (Eu₃O₄(s)) = -2270.5 ± 12 kJ mol⁻¹. Our recommended entropies yield $\Delta S^{o}_{f,298.15}$ (Eu₃O₄(s)) = $S^{o}_{298.15}$ (Eu₃O₄(s)) = $S^{o}_{298.15}$ (Eu₃O₄(s)) = 209.2 – 3(77.81) – 2(205.04) = -434.3 ± 8.8 J K⁻¹ mol⁻¹. Thus, $\Delta G^{o}_{f,298.15}$ (Eu₃O₄(s)) = -2141.0 ± 14 kJ mol⁻¹. Hariharan and Eick¹¹¹ studied the thermal decomposition of EuOCl(s) from Knudsen effusion vapor pressure measurements from 1236 to 1617 K. The predominant reaction is given by eq 6, and monoclinic Eu_2O_3 and gaseous $EuCl_2$ and Cl were the products. However, traces of cubic Eu_2O_3 were generally observed, which suggests that the initial decomposition could have been to the cubic form (or that some cubic Eu_2O_3 formed during quenching). Being unsure of that, however, we and they made thermodynamic calculations assuming formation of monoclinic Eu_2O_3 . Hariharan and Eick¹¹¹ gave a third-law decomposition enthalpy of 727.2 ± 18.4 kJ per 3 mols of EuOCl(s) for reaction 6. Combining our selected data for EuCl₂(s) and Eu₂O₃(monoclinic) with Hariharan and Eick's⁹⁴ vaporization enthalpy for EuCl₂ yields $\Delta H^{\circ}_{f,298.15}$ (EuOCl(s)) = -911.1 ± 7.3 kJ mol⁻¹. Although the vaporization enthalpy of EuCl₂ of 346.0 ± 11 kJ mol⁻¹ from Hariharan and Eick⁹⁴ was felt to be the best available result for our calculations, it is in poor agreement both with Polyachenok and Novikov's value⁹³ of 231 kJ mol⁻¹ and with Hastie et al.'s⁸⁹ 255 \pm 4 kJ mol⁻¹. Thus the EuOCl enthalpy of formation may have much larger error than estimated above. Using our selected entropy for EuOCl(s) yields an entropy of formation of $\Delta S^{\circ}_{f,298.15}(\text{EuOCl(s)}) = -190.0 \pm 3.7 \text{ J K}^{-1} \text{ mol}^{-1}$; therefore $\Delta G^{\circ}_{f,298.15}(\text{EuOCl(s)}) = -854.4 \pm 8.4 \text{ kJ mol}^{-1}$. Again, the errors could actually be larger. Hariharan and Eick^{313a} studied the congruent vaporization of EuI₂. To calculate $\Delta H^{\circ}_{f,298.15}(\text{EuI}_{2}(s))$ requires estimating molecular parameters for EuI₂(g). Since this is rather uncertain, we choose not to reanalyze these data. Data for EuF₂(s) and EuF₃(s) are discussed in Section IV.F.9. Haschke^{99f} studied the incongruent vaporization of EuBr₃(s) to form EuBr₂(s) and Br₂(g), using a spectro-photometer to monitor the Br₂(g) vapor pressure. To calculate enthalpy of formation data for EuBr₃(s) requires enthalpy of formation data for EuBr₂(s). Two vaporization studies have been made for EuBr₂;^{313b,c} the more recent one^{313c} is undoubtedly more accurate and was accepted. Haschke^{313c} estimated the dissociation energy for EuBr₂(g) from that of the other europium dihalides. The calculated $\Delta H^{\circ}_{f,298.15}(\text{EuBr}_2(\text{g}))$ was then combined with the sublimation enthalpy to yield $\Delta H^{\circ}_{\rm f,298.15}(EuBr_2(s)) = -720 \pm 33~kJ~mol^{-1}.$ Then, the decomposition pressure measurements 99f yield $\Delta H^{\circ}_{\rm f,298.15}(EuBr_3(s)) = -753 \pm 33~kJ~mol^{-1}.$ The selected entropy of EuBr₃ yields $\Delta S^{\circ}_{f,298.15}$ (EuBr₃(s)) = $182.8 - \frac{3}{2}(152.21) - 77.81 = -123.3 \pm 1.0$ J K⁻¹ mol⁻¹, and $\Delta G^{\circ}_{f,298.15}$ (EuBr₃(s)) = -716 ± 33 kJ mol⁻¹. A redetermination of the enthalpy of formation of EuBr₃(s) using solution calorimetry would yield much more precise values for ΔH and ΔG . #### F. Thermodynamic Data for Hydrated Salts EuCl₃·6H₂O falls in this classification but was treated earlier since it was needed for evaluation of the aqueous solution data. Also, Eu(OH)₃ and EuSO₄ will be treated in this section since they precipitate from aqueous solutions, although they will be treated as unhydrated. In addition, both hydrated and anhydrous europium fluorides and discussed together here. #### 1. Europium Nitrate Eu(NO₃)₃·6H₂O is the stable hydrate precipitating from a saturated Eu(NO₃)₃ solution from about 237 to 300 K. Mironov et al.'s solubilities ¹³³ are generally inconsistent with published data for other RE(NO₃)₃·6H₂O and are usually too low. ¹⁴⁰ Rard ¹⁴¹ determined the aqueous solubility to be 4.2732 \pm 0.0061 mol kg⁻¹ at 298.15 K. The solubility reaction is given formally as $$Eu(NO_3)_3 \cdot 6H_2O(c) =$$ $Eu^{3+}(aq) + 3NO_3^-(aq) + 6H_2O(l)$ (27) which has a thermodynamic solubility product given by $$K_{\rm s} = a_{\rm c} a_{\rm a}^3 a_{\rm w}^6 \tag{28}$$ where the subscript c denotes the Eu³⁺ cation, a the NO₃⁻ anion, and w water. Using published activity coefficient data, ²⁵⁶ Rard¹⁴¹ reported that $K_s = 69.8 \pm 9.3$, where the main uncertainty comes from the low concentration extrapolation of activity coefficient data. This yields a Gibbs energy of formation of $\Delta G^{\circ}_{f,298.15^{\circ}}$ (Eu(NO₃)₃·6H₂O(c)) = -576.2 + 3(-111.34) + 6(-237.19) + 10.52 = -2322.8 ± 5.4 kJ mol.⁻¹ Afanas'ev and Koroleva^{313d} reported an enthalpy of solution for Eu(NO₃)₃·6H₂O, but it is not clear if or how they extrapolated their data
to infinite dilution. Also, their data for other RE(NO₃)·6H₂O are quite scattered and indicate errors of at least 10–30%. This is inadequate for our purpose. A more reliable estimate of the enthalpy of solution of Eu(NO₃)₃·6H₂O can be made from the more precise enthalpy of solution data for La, Nd, Gd, Ho, and Er nitrate hexahydrates. The Graphical interpolation yields 13.8 ± 0.8 kJ mol⁻¹ for Eu(NO₃)₃·6H₂O. Then, the enthalpy of formation of Eu(NO₃)₃·6H₂O is given by $\Delta H^{\circ}_{f,298.15}$ (Eu(NO₃)₃·6H₂O(c)) = -604.8 + 3(-207.36) + 6(-285.83) - 13.8 = -2955.7 \pm 5.0 kJ mol⁻¹, and the entropy of formation is $\Delta S^{\circ}_{f,298.15}$ (Eu(NO₃)₃·6H₂O(c)) = -2122.5 \pm 20 J K⁻¹ mol⁻¹. Thus, $S^{\circ}_{298.15}$ (Eu(NO₃)₃·6H₂O(c)) = -2122.5 + 77.81 + $^{3}/_{2}$ (191.50) + 6(130.57) + $^{15}/_{2}$ (205.04) = 563.8 \pm 21 J K⁻¹ mol⁻¹. Comparison with the Gd(NO₃)₃·6H₂O experimental entropy²⁹⁵ of 557.3 J K⁻¹ mol⁻¹ from heat capacity data suggests that the mean value for Eu(NO₃)₃·6H₂O could actually be more accurate than these uncertainty limits indicate. #### 2. Europium Iodate Laurie and Monk¹⁵⁵ found the solubility of Eu³⁺ iodate at 298.15 K to be 8.18×10^{-4} mol L⁻¹, Firsching and Paul¹⁵⁶ obtained 8.0×10^{-4} mol L⁻¹, Bertha and Choppin¹⁶⁷ obtained 8.0×10^{-4} mol L⁻¹, and Miyamoto et al. 238 obtained 7.8×10^{-4} mol L⁻¹. The best value of the solubility is $(7.97 \pm 0.14) \times 10^{-4}$ mol L⁻¹, which equals $(7.99 \pm 0.14) \times 10^{-4}$ mol kg⁻¹. In most of these studies the composition of the solid phase was not analvzed. Nassau et al. 315 and Abrahams et al. 157 found that precipitation of RE(NO₃)₃ solutions with HIO₃ near room temperature gave RE(IO₃)₃·4H₂O or RE(IO₃)₃· 2H₂O for Eu to Lu, with the dihydrate usually obtained for Eu; however Yakunina et al.316 and Hajek and Hradilová.317 obtained the tri- and tetrahydrates. Miyamoto²³⁸ prepared the dihydrates for most RE and measured solubilities for these same samples that generally agree with the other studies. Thus, solubility data probably refer to Eu(IO₃)₃·2H₂O, and the various hydrates probably differ little in stability. The solubility equilibrium is then given formally by $$Eu(IO_3)_3 \cdot 2H_2O(s) = Eu^{3+}(aq) + 3IO_3^{-}(aq) + 2H_2O(l)$$ (29) and the solubility product by $$K_{\rm s} = a_{\rm c} a_{\rm a}^3 a_{\rm w}^2 = 27 m^4 \gamma_{\rm c} \gamma_{\rm a}^3 a_{\rm w}^2 = (4.7 \pm 0.4) \times 10^{-12}$$ (30) Calculations were made with the Debye-Hückel equation assuming an ion size of 6.6 Å, as was found for Sm-Gd perchlorates.³¹⁸ The resulting activity coefficients are assumed uncertain by 10%. These values yield a standard Gibbs energy of solution of 64.7 ± 0.2 kJ mol⁻¹, and $\Delta G^{\circ}_{f,298.15}(\text{Eu}(\text{IO}_3)_3 \cdot 2\text{H}_2\text{O}(\text{s})) = -576.2 +$ $3(-128.2) + 2(-237.19) - 64.7 = -1499.7 \pm 5.7 \text{ kJ mol}^{-1}$ Bertha and Choppin¹⁶⁷ determined the enthalpy of precipitation of Eu(IO₃)₃ and other RE iodates at several ionic strengths. Data at an ionic strength of 0.05 mol L⁻¹ were unreliable owing to formation of colloids, but data of other ionic strengths showed no trend with concentration. Their data yield an enthalpy of solution of $21.3 \pm 2.1 \text{ kJ mol}^{-1}$ assuming a 10% uncertainty and an enthalpy of formation of $\Delta H^{\circ}_{f,298.15}(\text{Eu}(\text{IO}_3)_3 \cdot 2\text{H}_2\text{O}$ -(s)) = -604.8 + 3(-221.3) + 2(-285.83) - 21.3 = -1861.8 $\pm 8.0 \text{ kJ mol}^{-1}. \text{ Then, } \Delta S^{\circ}_{f,298.15}(\text{Eu}(\text{IO}_3)_3 \cdot 2\text{H}_2\text{O}(\text{s})) = \\ -1214.3 \pm 26 \text{ J K}^{-1} \text{ mol}^{-1}. \text{ Also, } S^{\circ}_{298.15}(\text{Eu}(\text{IO}_3)_3 \cdot 2\text{H}_2\text{O}(\text{s})) = \\ -1214.3 + 77.81 + \frac{3}{2}(116.14) + 2(130.57) \\ + \frac{11}{2}(205.04) = 426.6 \pm 27 \text{ J K}^{-1} \text{ mol}^{-1}.$ #### 3. Europium Hydroxide and Hydroxychlorides It was noted earlier that precipitation of hydroxides from Eu³⁺ salt solutions generally gives a mixed-anion hydroxide. Aksel'rud and Ermolenko⁷⁸ studied the precipitation of Eu³⁺ by OH⁻ from solutions containing 0.1, 0.2, 0.5, 1.0, and 2.0 mol L⁻¹ NaCl and also studied the changes in precipitate composition with aging. After aging 150 days, the composition in all cases was found to be chloride-free, i.e., Eu(OH)₃. Solubilities of "RE(OH)₃" are well-known to change as the solutions age and part of this is due to removal of other anions from the hydroxide precipitate. Other factors affecting solubility are changes in the relative amounts of monomers and polymers in the aqueous phase and possible changes in the solid hydroxide phase (such as crystal growth, crystals forming from amorphous hydrous oxides, etc.). "Pure" $\mathrm{Eu}(\mathrm{OH})_3$ was found after 150 days, and the solubility product showed only a slight ionic strength dependence. No trend was observed for $\mathrm{ln}\ K_{\mathrm{s}}$ as a function of pH or Eu^{3+} concentration, so the solution phase was assumed to be unhydrolyzed Eu^{3+} in these well-aged solutions. Under these conditions the solubility reaction is given by $$Eu(OH)_3(s) = Eu^{3+}(aq) + 3OH^{-}(aq)$$ (31) Extrapolation of $\ln K_s$ as a function of the square root of ionic strength gave $\ln K_s = -60.8 \pm 0.5$ at infinite dilution. Thus, the standard Gibbs energy of solution is $\Delta G^{\circ}_{298.15} = -RT \ln K_s = 150.7 \pm 5.7 \, \text{kJ mol}^{-1}$, where K_s is now assumed to be uncertain by a factor of 10 to account for possible future aging effects. Then, $\Delta G^{\circ}_{f,298.15}(\text{Eu}(\text{OH})_3(\text{s})) = -576.2 + 3(-157.34) - 150.7 = -1198.9 \pm 7.9 \, \text{kJ mol}^{-1}$, $\Delta S^{\circ}_{f,298.15}(\text{Eu}(\text{OH})_3(\text{s})) = 119.9 - 77.81 - \frac{3}{2}(205.04) - \frac{3}{2}(130.57) = -461.3 \pm 1.2 \, \text{J K}^{-1}$ mol⁻¹, and $\Delta H^{\circ}_{f,298.15}(\text{Eu}(\text{OH})_3(\text{s})) = -1336.5 \pm 8.3 \, \text{kJ mol}^{-1}$. A direct determination of the enthalpy of solution of Eu(OH)₃ in acid would be desirable as a check. Their precipitate was Eu(OH)_{2.5}Cl_{0.5} after 50 days of aging and had a solubility that depended on the 0.52 power of the chloride activity (theoretically 0.50 power).⁷³ For this material $$Eu(OH)_{2.5}Cl_{0.5}(s) =$$ $Eu^{3+}(aq) + 2.5 OH^{-}(aq) + 0.5 Cl^{-}(aq)$ (32) and $\ln K_s = -50.9$. Thus, the standard Gibbs energy of solution is 126.2 ± 5.7 kJ mol⁻¹, and $\Delta G^{\circ}_{\rm f,298.15}({\rm Eu-(OH)_{2.5}Cl_{0.5}(s)}) = -1161.4 \pm 7.8$ kJ mol⁻¹. It is not clear whether Eu(OH)_{2.5}Cl_{0.5} is a stoichiometric compound or simply a mixture of Eu(OH)₂Cl and Eu(OH)₃ but the dependence of solubility on chloride activity suggests the former may be true. Similar calculations for the fresh precipitate Eu-(OH)₂Cl(s) yield $\ln K_s = -43.4$, so the standard Gibbs energy of solution is 107.7 ± 5.7 kJ mol⁻¹ and $\Delta G^{\circ}_{f,298.15}(\text{Eu}(\text{OH})_2\text{Cl}(\text{s})) = -1129.9 \pm 7.8$ kJ mol⁻¹. All of the K_s values in this section were assumed uncertain by a factor of 10 for thermodynamic calculations. #### 4. Europium Perchlorate The solubility of Eu(ClO₄)₃ was reported to be 4.6334 mol kg⁻¹, ^{163,229} with an uncertainty of about 0.2%. This value could, in principle, be combined with an estimated value for the activity coefficient interpolated from data for the other RE(ClO₄)₃¹⁷⁰ to yield a thermodynamic solubility product for Eu(ClO₄)₃·nH₂O. Since no analysis was made for the hydrate, we do not further analyze these data, but it may well have been Eu(ClO₄)₃·8H₂O or a lower hydrate. ## 5. Europium Bromate Staveley et al.¹⁵⁹ determined the enthalpy of solution of Eu(BrO₃)₃·9H₂O in water and found its solubility to be 1.21 mol kg⁻¹ at 298 K. They determined the integral enthalpy of solution to be about 68.6 ± 0.2 kJ mol⁻¹ for dilution to 0.010 mol L⁻¹. There are no enthalpy of dilution data for Eu(BrO₃)₃, so the correction to infinite dilution of -2.0 ± 0.3 kJ mol⁻¹ was made by averaging the data for the chloride¹⁶² and perchlorate.²³³ The enthalpy of solution to infinite dilution is then $66.6 \pm$ 1.0 kJ mol⁻¹, where the uncertainty limit has been increased due to the uncertainty in the approximate extrapolation and because of the somewhat low purity of their Eu(BrO₃)₃·9H₂O. Then, $\Delta H^{\circ}_{1,298.15}$ (Eu(BrO₃)₃·9H₂O(c)) = -604.8 + 3(-83.68) + 9(-285.83) - 66.6 = -3494.9 ± 7.8 kJ mol⁻¹. There are no activity data for aqueous RE(BrO₃)₃, so the solubility data cannot presently be used to obtain Gibbs energies of solution. #### 6. Europium Carbonates Karapet'yants et al. ¹²⁸ measured the enthalpies of dissolution of Eu₂(CO₃)₃ and Eu₂(CO₃)₃·3H₂O in 0.33 mol kg⁻¹ HCl to form solutions with final Eu³⁺ concentrations of 0.030 mol kg⁻¹. Their enthalpies of dissolution were -141.4 ± 1.7 kJ mol⁻¹ for the anhydrous compound and -91.2 ± 1.7 kJ mol⁻¹ for the trihydrate. The solution processes were $$Eu_2(CO_3)_3 \cdot nH_2O(s) + 6HCl$$ (in aq HCl) = $2Eu^{3+}$ (in aq HCl) + 6 Cl⁻ (in aq HCl) + $(3 + n)H_2O$ (in aq HCl) + 3CO₂(g) (33) and the final solutions were in 0.239 mol kg⁻¹ HCl. Their results for the enthalpy of solution of EuCl₃·6H₂O in this medium and our selected value for the formation enthalpy of EuCl₃·6H₂O were used in these calculations. Then, $\Delta H^{\circ}_{f,298.15}(Eu_2(CO_3)_3(s)) = -3092.5 \pm 11$ kJ mol⁻¹, and $\Delta H^{\circ}_{f,298.15}(Eu_2(CO_3)_3\cdot3H_2O(s)) = -4000.4 \pm 11$ kJ mol⁻¹. Karapet'yants et al. ³¹⁹ utilized Caro et al.'s Eu₂(CO₃)₃ solubilities ¹²⁶ to calculate thermodynamic data. However, Caro et al.'s data at 296 \pm 1 K were for 1 atm CO₂ pressure, which should decrease the pH and increase the solubility. Sklyarenko and Ruzaikina ¹²⁷ found that Eu₂(CO₃)₃ has a minimum solubility between pH 7.0 and 8.0, with an increase in solubility at lower and higher pH values. They reported a solubility of 3.88 \times 10⁻⁶ mol
L⁻¹ for Eu₂(CO₃)₃ at 303 K. This will also be taken for the 298 K solubility, but the uncertainty will be assumed to be a factor of 5. Also, the solid phase under these conditions is Eu₂(CO₃)₃·3H₂O. ¹²⁵⁻¹²⁷ Thus Eu₂(CO₃)₃·3H₂O(s) = $$2Eu^{3+}(aq) + 3CO_3^{2-}(aq) + 3H_2O(1)$$ (34) is the formal solubility reaction. For it $$K_8 = a_c^2 a_s^3 a_w^3 = (2m)^2 (3m)^3 \gamma_{\pm}^5 = 108m^5 \gamma_{\pm}^5$$ (35) where $a_{\rm w} \simeq 1$ since the solution is dilute and $m = (1/2)(3.88 \times 10^{-6}) = 1.94 \times 10^{-6}$ mol kg⁻¹. Under the assumption of an arbitrary ion size of 5.0 Å for this system, the Debye–Hückel equation yields $\gamma_{\pm} = 0.963$. Then, $\ln K_{\rm s} = -61.3 \pm 8.1$, the standard Gibbs energy of solution is 151.9 ± 20 kJ mol⁻¹, and $\Delta G^{\circ}_{\rm f,298.15}({\rm Eu_2-(CO_3)_3\cdot3H_2O(s)}) = 2(-576.2) + 3(-527.84) + 3(-237.19) - 151.9 = -3599.4 \pm 30$ kJ mol⁻¹. Also $\Delta S^{\circ}_{\rm f,298.15}({\rm Eu_2-(CO_3)_3\cdot3H_2O(s)}) = -1344.9 \pm 100$ J K⁻¹ mol⁻¹ and $S^{\circ}_{\rm 298.15}({\rm Eu_2(CO_3)_3\cdot3H_2O(s)}) = -1344.9 + 2(77.81) + 3(5.74) + 6(205.04) + 3(130.57) = 449.9 \pm 100$ J K⁻¹ mol⁻¹. The average value seems to be somewhat high, so some of the input data may have larger errors than estimated here. #### 7. Europium(III) Sulfates Long and Degraff³²⁰ measured the heat capacities of Eu₂(SO₄)₃·8H₂O(c) from 62.83 to 295.23 K. These have been analyzed²⁹⁵ to yield an entropy of 672.0 J K⁻¹ mol⁻¹; it is probably uncertain by several J K⁻¹ mol⁻¹ owing to the long extrapolation below 63 K. Interpolation of solubility curves for several $RE_2(SO_4)_3$ gives about 0.038 mol kg^{-1} for the solubility of the Eu salt at 298.15 \pm 0.02 K.¹⁴⁹ This is in rough agreement with linear interpolation of Jackson and Rienäcker's data at 293 and 313 K.³²¹ Jackson and Rienäcker incorrectly used the temperature dependence of the log of solubility and not of the solubility product in calculating their ΔH . Unfortunately, there is no available activity coefficient data to allow free energies of solution to be calculated. Also, because of extensive ionic association, it is difficult to reliably estimate its activity coefficients. A rough calculation of the solubility product using 0.038 mol kg⁻¹ for the solubility¹⁴⁹ and the Debye–Hückel equation with an arbitrary ion size of 5 Å²⁴⁸ gives ln $K_{\rm s}=-23.6\pm5$ and a standard Gibbs energy of solution of 58.4 ± 12 kJ mol⁻¹. Then, $\Delta G^{\circ}_{\rm f,298.15^{\circ}}$ (Eu₂(SO₄)₃·8H₂O(s)) = 2(-576.2) + 3(-744.46) + 8(-237.19) - 58.4 = -5341.7 ±17 kJ mol⁻¹. The entropy of formation is $\Delta S^{\circ}_{\rm f,298.15}$ (Eu₂(SO₄)₃·8H₂O(s)) = 672.0 - 2(77.81) - 3(32.05) - 8(130.57) - 10(205.04) = -2674.7 ±5.0 J K⁻¹ mol⁻¹, and $\Delta H^{\circ}_{\rm f,298.15}$ (Eu₂(SO₄)₃·8H₂O(s)) = -6139.2 ±19 kJ mol⁻¹. It is possible that the errors for ΔG and ΔH are larger than estimated owing to the limited solubility data. Differential scanning microcalorimetry was used to determine heat capacities above room temperature for Eu₂(SO₄)₃·8H₂O, Eu₂(SO₄)₃·2H₂O, Eu₂(SO₄)₃, and several K₂SO₄·Eu₂(SO₄)₃ double salts. These results are not analyzed here since we are interested in 298 K data and because these types of measurements have fairly large uncertainties. #### 8. Europium(II) Sulfate Solubility data have also been reported for aqueous EuSO₄. $^{150,272,323-325}$ Its solubility is affected by the presence of other ions and by changes in pH, so only solubilities in pure water were considered. Three values in water at 298.15 K range from 3.8×10^{-5} to 1.08×10^{-4} mol L⁻¹. 150,324,325 Averaging these values on the log scale gives $(6.7 \pm 4.6) \times 10^{-5}$ mol L⁻¹. Anhydrous EuSO₄ is the solid phase precipitating from these solutions, 323,326 so the solubility product is given by $$K_s = a_c a_s = m^2 \gamma_{\pm}^2 \tag{36}$$ No activity coefficient data are available for EuSO₄ solutions, but all divalent metal sulfates have very similar activity coefficients. For example, at (6.7 \pm 4.6) \times 10⁻⁵ mol kg⁻¹, MgSO₄³²⁷ and MnSO₄³²⁸ data yield γ_{\pm} = 0.908 \pm 0.016. This γ_{\pm} value yields ln $K_{\rm s}$ = -19.4 \pm 1.1 and $\Delta G^{\rm o}_{\rm f,298,15}({\rm EuSO_4(s)})$ = -1335.1 \pm 7.3 kJ mol⁻¹. Koz'min et al. ¹⁵⁰ measured their solubilities at three temperatures, and their data yield an approximate enthalpy of solution of 33.7 \pm 5.0 kJ mol⁻¹. Then, $\Delta H^{\rm o}_{\rm f,298,15}({\rm EuSO_4(s)})$ = -527.7 - 909.60 - 33.7 = -1471.0 \pm 9.1 kJ mol⁻¹, $\Delta S^{\rm o}_{\rm f,298,15}({\rm EuSO_4(s)})$ = -455.8 \pm 54 J K⁻¹ mol⁻¹, and $S^{\rm o}_{\rm 298,15}({\rm EuSO_4(s)})$ = -455.8 + 77.81 + 32.05 + 2(205.04) = 64.1 \pm 55 J K⁻¹ mol⁻¹. A value near the upper uncertainty limit would be more realistic, and the enthalpy of solution may have larger uncertainty than estimated. #### 9. Europium Fluorides Solubility product determinations for REF₃ in aqueous solution show considerable variation. For ex- ample, data for K_s of LaF₃ cited by Burgess and Kijowski¹⁶ range from 6.3×10^{-23} to 1.1×10^{-15} mol⁴ kg⁻⁴. Unfortunately, EuF₃ is no exception in this regard.^{329–334} There is agreement that EuF₃·0.5H₂O is the solid phase in equilibrium with the saturated solutions.^{16,17b,335a} Thus, the solubility equilibrium is $$EuF_3 \cdot 0.5H_2O = Eu^{3+}(aq) + 3F^{-}(aq) + 0.5 H_2O(1)$$ (37) for which $$K_{\rm s} = a_{\rm c} a_{\rm a}^{3} a_{\rm w}^{0.5} = 27 m^{4} \gamma_{\pm}^{4} a_{\rm w}^{0.5}$$ (38) Since the solubility is fairly low, $a_{\rm w} \simeq 1$ for $K_{\rm s}$ calculations. $K_{\rm s}$ values show large variations with pH and have a minimum value around pH 4 or 5;^{329–334} the solubility increase at lower pH values is probably due to formation of molecular HF. Solubility values in 0.1 mol L⁻¹ NaNO₃ seem concordant with the aqueous solution values.³³⁶ For EuF₃·0.5H₂O at 298.15 K, Vasil'ev and Kozlovskii's analysis³³³ of published data³²⁹ gave $\ln Q_s = -50.4$, Lingane's potentiometric titration³³⁰ gave $\ln Q_s = -38.36 \pm 0.09$, Koroleva et al.³³² obtained -35.41 ± 0.23 , and Frausto Da Dilva and Queimado³³⁶ give -39.6 to -42.6. Menon³³⁴ obtained -34.75 ± 0.11 radiometrically, -28.94 ± 0.09 potentiometrically, and -29.83 ± 0.05 conductometrically, but considered the radiometric value to be more reliable. Here Q_s is the apparent solubility constant. The recommended solubility value is the average of the four results in best agreement: $\ln Q_s = -37.0 \pm 2.3$. Correction to infinite dilution by means of the Debye–Hückel limiting law gives -37.2 ± 2.3 . Discrepant values of Vasil'ev and Kozlovskii³³³ and Menon's³³⁴ conductometric and potentiometric data were rejected. The recommended solubility data yield a standard Gibbs energy of solution of 92.3 \pm 5.8 kJ mol $^{-1}$ and $\Delta G^{\circ}_{\rm f,298.15}({\rm EuF_3\cdot 0.5H_2O(s)}) = -576.2 + 3(-281.74) + ^1/_2(-237.19) - 92.3 = -1632.4 <math display="inline">\pm$ 12 kJ mol $^{-1}$. Menon 334 determined the solubility of EuF $_3\cdot 0.5H_2O$ at five temperatures and used these results to estimate an enthalpy of solution of 39.8 \pm 4.0 kJ mol $^{-1}$, which indicates an increasing solubility with increasing temperature. Thus, $\Delta H^{\circ}_{\rm f,298.15}({\rm EuF_3\cdot 0.5H_2O(s)}) = -604.8 + 3(-335.35) + ^1/_2(-285.83) - 39.8 = -1793.6 \pm 10$ kJ mol $^{-1}$. Then, $\Delta S^{\circ}_{\rm f,298.15} = -540.8 \pm 54$ J K $^{-1}$ mol $^{-1}$ and $S^{\circ}_{\rm 298.15} - ({\rm EuF_3\cdot 0.5H_2O(s)}) = -540.8 + 77.81 + ^3/_2(202.69) + ^1/_2(130.57) + ^1/_4(205.04) = -42.4 \pm 55$ J K $^{-1}$ mol $^{-1}$. Obviously this value should be positive; the negative mean value is a reflection of the large imprecision of the input data and suggests that the enthalpy and thus the entropy of solution have much large errors than estimated by Menon. Itoh et al.³³⁷ recently reported solubilities from dissolution of powdered EuF_3 and other REF_3 using fluoride ion sensitive electrodes. Their solubilities seem to be somewhat low; $\ln K_s = -43.4$ for EuF_3 . They investigated LaF_3 in more detail. Single crystals of LaF_3 did not reach saturation after 3 months, although the powdered crystals did so much more rapidly. Surface effects and difficulty in hydrating REF_3 probably caused these differences. Their solubility values thus may possibly refer to anhydrous or partially hydrated REF_3 . Storozhenko et al.^{335a} studied the enthalpy of solution of EuF₃ and EuF₃·0.44H₂O in a mixture of HCl and boric acid. These data yield an enthalpy of hydration of 3.9 ± 0.3 kJ mol⁻¹, which we adjust to 4.4 ± 0.4 kJ mol⁻¹ for EuF₃·0.5H₂O. Then, $\Delta H^{\circ}_{f,298.15}(\text{EuF}_{3}(\text{s})) = -1793.6 - \frac{1}{2}(-285.83) - 4.4 = -1655.1 \pm 11$ kJ mol⁻¹. As for EuF₃·0.5H₂O, the enthalpy of formation could have larger errors than estimated here. Kim and Johnson³³⁸ estimated that the value of $\Delta H^{\circ}_{f,298.15}$ should be ca. -1610 kJ mol⁻¹ for EuF₃, based on correlations with experimental values for other REF₃. In 1976 Storozhenko et al. 335a reported enthalpies of reaction of Eu metal with oxygen-free aqueous HF and with aqueous HF containing small amounts of H_2O_2 . They used their results to calculate $\Delta H^{\circ}_{f,298.15}(\text{EuF}_3\cdot 0.52H_2O(s)) = -1701.8 \pm 4.6 \text{ kJ mol}^{-1}$, $\Delta H^{\circ}_{f,298.15}(\text{EuF}_3\cdot 0.76H_2O(s)) = -1393.8 \pm 2.2 \text{ kJ mol}^{-1}$. Considering the difficulties in obtaining pure metallic Eu and being uncertain about their choice of data for F_2 and HF(aq), we consider these results to be fairly uncertain. However, use of the 1976 values would at least give a positive entropy for EuF₃·0.5H₂O. positive entropy for EuF₃·0.5H₂O. Zmbov and Margrave^{335b} used high-temperature gas-phase mass spectrometry and enthalpy of sublimation
data to calculate $\Delta H^{\circ}_{f,298.15}(\text{EuF}_{3}(\text{s})) = -1720 \pm 42 \text{ kJ mol}^{-1}$. Combining Zmbov and Margrave's^{335b} enthalpy of formation of EuF₂(g) with Petzel and Greis's^{335c} third-law enthalpy of sublimation yields $\Delta H^{\circ}_{f,298.15}(\text{EuF}_2(s)) = -1081 \pm 50 \text{ kJ mol}^{-1}$. In view of the large variation of the enthalpies of formation of EuF₃ and EuF₃·0.5H₂O and the large uncertainty for EuF₂, we do not recommend enthalpy data for any of the europium fluorides. High-temperature relative enthalpies are also available for EuF₃ up to 1252 K from drop calorimetry for both orthogonal and hexagonal forms in their corresponding stability regions.³³⁹ Greis and Haschke^{17b} estimated that $S^{\circ}_{298.15}(\text{EuF}_{3}(c)) \simeq 115.1 \text{ J K}^{-1} \text{ mol}^{-1}$. Table I summarizes thermodynamic data for solid Eu compounds. #### G. Thermodynamic Data for Aqueous Species This section is concerned with thermodynamic data for aqueous complexes at 298.15 K. Three separate problems need to be dealt with when analyzing aqueous solution thermodynamic and chemical information: (1) Most studies of stability constants are done at constant ionic strength, and only a few were done with ionic strength varied to allow extrapolation to infinite dilution. However, significant media effects are sometimes observed. For example, Khopkar and Narayanankutty²¹⁶ measured the formation constants of EuCl²⁺ and Eu(NO₃)²⁺ at an ionic strength of 1, with LiClO₄, HClO₄, NaClO₄, and NH₄ClO₄ being used to adjust the ionic strength. Stability constants for Eu-(NO₃)²⁺ showed 10% variation with media, but EuCl²⁺ constants varied by more than a factor of 2. Similarly, Choppin et al. 261 obtained 25% variations of K of Eu-(NO₃)²⁺ for HNO₃, LiNO₃, NH₄NO₃, and NaNO₃ solutions. These differences are clearly due to changes in γ_{\pm} and $a_{\rm w}$ due to varying the "inert cation". This media effect may make derived stability constants uncertain by at least 10-30%. These differences can, in principle, be eliminated by extrapolation of data to infinite dilution. Unfortunately, since many studies are at a single TABLE I Thermodynamic Data for Eu(c) and Solid Eu Compounds at 298.15 K | substance | $\Delta G^{\circ}_{\mathrm{f,298.15}}$, kJ mol^{-1} | $\Delta H^{\circ}_{f,298.15}$, kJ mol^{-1} | $S^{\circ}_{298.15}, J \ \mathrm{K^{-1}\ mol^{-1}}$ | | | | |--|---|--|---|--|--|--| | Eu(c) | 0 | 0 | 77.81 ^a | | | | | EuS(s) | -443.1 ± 7.9 | -447.3 ± 7.2 | 95.77 | | | | | Eu ₂ O ₃ (monoclinic) | -1555.7 ± 3.7 | -1650.8 ± 2.6 | 144.1 ± 3.7 | | | | | Eu ₂ O ₃ (cubic) | -1564.9 ± 4.7 | -1661.9 ± 3.8 | 137.8 ± 2.3 | | | | | EuO(s) | -563.4 ± 5.7 | -592.2 ± 5.5 | 83.64 | | | | | $Eu_3O_4(s)$ | -2141.0 ± 14 | -2270.5 ± 12 | 209.2 ± 8.8 | | | | | $EuCl_3(s)$ | -855.8 ± 4.3 | -935.8 ± 4.0 | 144.1 | | | | | $EuCl_3\cdot 6H_2O(c)$ | -2363.4 ± 7.8 | -2784.5 ± 4.3 | 409.1 ± 3 | | | | | $EuCl_2(s)$ | -774.8 ± 7.9 | -822.5 ± 6.7 | 141.0 ± 3.3 | | | | | EuOCl(s) | -854.4 ± 8.4 | -911.1 ± 7.3 | 101.8 ± 3.7 | | | | | $EuBr_3(c)$ | -716 ± 33 | -753 ± 33 | 182.8 | | | | | $Eu(OH)_3(c)$ | -1198.9 ± 7.9 | -1336.5 ± 8.3 | 119.9 | | | | | $Eu(NO_3)_3\cdot 6H_2O(c)$ | -2322.8 ± 5.4 | -2955.7 ± 5.0 | 563.8 ± 21 | | | | | $Eu(IO_3)_3\cdot 2H_2O(c)$ | -1499.7 ± 5.7 | -1861.8 ± 8.0 | 426.6 ± 27 | | | | | $Eu(OH)_{2.5}Cl_{0.5}(s)$ | -1161.4 ± 7.8 | | | | | | | $Eu(OH)_2Cl(s)$ | -1129.9 ± 7.8 | | | | | | | $Eu(BrO_3)_3 \cdot 9H_2O(c)$ | | -3494.9 ± 7.8 | | | | | | $\mathrm{Eu}_2(\mathrm{CO}_3)_3(\mathbf{s})$ | | -3092.5 ± 11 | | | | | | $\mathrm{Eu}_2(\mathrm{CO}_3)_3 \cdot 3\mathrm{H}_2\mathrm{O}(\mathrm{s})$ | -3599.4 ± 30 | -4000.4 ± 11 | 449.9 ± 100 | | | | | $\mathrm{Eu_2(SO_4)_3}$ ·8 $\mathrm{H_2O(s)}$ | -5341.7 ± 17 | -6139.2 ± 19 | 672.0 | | | | | $EuSO_4(s)$ | -1335.1 ± 7.3 | -1471.0 ± 9.1^{b} | 64.1 ± 55^{b} | | | | | EuF_3 · $0.5H_2O(s)$ | -1632.4 ± 12 | | | | | | ^a Entropy values without assigned error limits are for systems with heat capacity data to low temperature but for which the authors assigned no uncertainty limit to the entropies. ^b Based in part on enthalpy of solution estimated from the temperature dependence of the solubility; the actual errors for $\Delta H_{\rm f}^{\,\circ}$ and $S^{\,\circ}$ could possibly be larger. ionic strength, this extrapolation cannot be done for them. - (2) At some anion to cation concentration ratios, more than one complex may be present. It has been found that neglecting a second complex can cause the calculated first formation constant to be in error by as much as 50%. 213,248 Consequently, preference will be given to those investigations that considered higher order complexes or that controlled the anion to cation ratio so as to make higher order complexes negligible. - (3) Some methods, such as liquid-liquid extraction, are sometimes used without proper understanding of the extraction mechanisms. For example, formation constants for Eu(IO₃)²⁺ measured by Choppin and Bertha²³⁵ and Roulet and Chenaux²³⁴ using this method show opposite trends with temperature. Direct enthalpy of complex formation measurements²³⁷ agree with Choppin and Bertha.²³⁵ Conflicting trends in stability constants will be reconciled whenever direct calorimetric results are available. ### 1. Hydrolyzed Europium Species A large number of studies have been made for the first hydrolysis of Eu³⁺ by water, 194-201, 243 eq 10, for which $$Q_{h1} = [Eu(OH)^{2+}][H^{+}]/[Eu^{3+}]$$ (39) Here $a_{\rm w} \simeq 1$ for dilute solutions. Whenever data have been extrapolated to infinite dilution (or corrected for activity coefficients), the Q values will be changed to K in this report. Two of these studies ^{195,196} are considerably discrepant from all the others and so were not considered further. Five of the other six studies ^{194,197–199,243} are in good agreement and fall in the range –18.49 to –20.03 for $\ln Q_{\rm hl}$. There is no trend with ionic strength within the scatter of the data. The rec- ommended value is their average of $\ln K_{\rm h1} = -19.00 \pm 0.62$. Then, the standard Gibbs energy change for eq 39 is 47.1 ± 1.6 kJ mol⁻¹, and $\Delta G^{\circ}_{\rm f,298.15}({\rm Eu}({\rm OH})^{2+}({\rm aq})) = 47.1 - 576.2 - 237.19 = -766.3 \pm 6.9$ kJ mol⁻¹. Caceci and Choppin's value²⁰⁰ also was not included in the average since their $Q_{\rm h1}$ appears to be slightly too large by about a factor of 10. If a second hydrolysis step also occurs, then $$Eu^{3+}(aq) + 2H_2O(l) = Eu(OH)_2^{+}(aq) + 2H^{+}(aq)$$ (40) for which $$\beta_{h2} = [Eu(OH)_2^+][H^+]^2/[Eu^{3+}] \tag{41}$$ assuming, again, that solutions are sufficiently dilute so $a_{\rm w} \simeq 1$. $\beta_{\rm h2}$ is defined as the cumulative hydrolysis constant; $\beta_{\rm h2} = Q_{\rm h1}Q_{\rm h2}$. Nair et al. ¹⁹⁹ reported that ln $\beta_{\rm h2} = -35.57 \pm 0.09$ in 1 mol L⁻¹ NaClO₄, and Bilal and Koss²⁰¹ got ln $\beta_{\rm h2} = -32.87 \pm 0.22$ in 1 mol L⁻¹ NaCl. The average of -34.2 ± 1.4 is recommended for ln $\beta_{\rm h2}$. No attempt was made to extrapolate this value to infinite dilution owing to a factor of 15 difference in these $\beta_{\rm h2}$ values, and the results were assumed uncertain by a factor of 50. Then, the free energy change for reaction 40 is 84.8 ± 9.7 kJ mol⁻¹, and $\Delta G^{\circ}_{f,298.15}({\rm Eu}({\rm OH})_2^+({\rm aq})) = 84.8 - 576.2 - 2(237.19) = -965.8 \pm 16$ kJ mol⁻¹. This $\beta_{\rm h2}$ value is in fair agreement with the estimate of Baes and Mesmer. ¹⁸⁷ ### 2. Europium Halate Complexes Roulet and Chenaux²³⁴ measured the Eu(ClO₃)²⁺, Eu(BrO₃)²⁺, and Eu(IO₃)²⁺ formation constants in 0.1 mol L⁻¹ NaClO₄, from 275 to 313 K, using liquid extraction. Choppin and Bertha²³⁵ did similar measurements for Eu(IO₃)²⁺, also in 0.1 mol L⁻¹ NaClO₄. Not only were Choppin and Bertha's formation constant²³⁵ for Eu(IO₃)²⁺ much larger than Roulet and Chenaux's, ²³⁴ but also their K's increased with increasing temperature, whereas Roulet and Chenaux's decreased. Direct enthalpy of reaction measurements²³⁷ confirm Choppin and Bertha's results for this salt, so Roulet and Chenaux's Eu(IO₃)²⁺ data were rejected. The sign of the enthalpy of complex formation suggests that Eu(IO₃)²⁺ aqueous complexes are predominantly inner sphere. From the Debye-Hückel activity coefficient equation with an appropriate ion size for this complex, 235 the formation constant is 68 ± 11 . Thus the standard Gibbs energy of reaction is $-RT \ln K = -10.5$ $\pm 0.4 \text{ kJ mol}^{-1}$. Then, $\Delta G^{\circ}_{f,298.15}(\text{Eu}(\text{IO}_3)^{2+}(\text{aq})) = -10.5 + (-576.2) + (-128.16) = -714.8 <math>\pm 7.8 \text{ kJ mol}^{-1}$. Choppin and Bertha's 235 data for the change in stability constant with temperature gave an enthalpy of reaction of $11.1 \pm 1.8 \text{ kJ mol}^{-1}$, which agrees with their direct calorimetric result of $11.3 \pm 0.8 \text{ kJ mol}^{-1.237}$ Both values are for 0.1 mol L⁻¹. We assume they approximate the infinite dilution value, so their mean of 11.2 ± 2.5 kJ mol⁻¹ is accepted. The error limit has been increased to account for lack of an enthalpy extrapolation. Then, $\Delta H^{\circ}_{f,298.15}(\text{Eu}(\text{IO}_3)^{2+}(\text{aq})) = 11.2 - 604.8 - 221.3 = -814.9$ \pm 8.7 kJ mol⁻¹, $\Delta S^{\circ}_{f,298.15}(\text{Eu}(\text{IO}_3)^{2+}(\text{aq})) = -335.8 \pm 35$ J K⁻¹ mol⁻¹, and $S^{\circ}_{298.15}(\text{Eu}(\text{IO}_3)^{2+}(\text{aq})) = -335.8 + 77.81 + \frac{1}{2}(116.14) + \frac{3}{2}(205.04) - 2(65.285) =
-22.9 \pm \frac{1}{2}(116.14) + \frac{3}{2}(116.14) \frac{3}$ 36 J K⁻¹ mol⁻¹. Morris and Tharwat²³⁶ and Roulet and Chenaux²³⁴ studied the formation constant for Eu(BrO₃)²⁺ at ionic strengths of 1.0 and 0.1 mol L^{-1} , respectively, as a function of temperature, and both found that the stability constant decreased with increasing temperature. Roulet and Chenaux²³⁴ reported an enthalpy of formation of $-13.8 \pm 3.8 \text{ kJ mol}^{-1}$, Morris and Tharwat²³⁶ reported -12 kJ mol^{-1} , but Choppin and Ensor²³⁷ found $-2.5 \pm 1.3 \text{ kJ mol}^{-1}$ by direct calorimetry. Owing to disagreement between direct calorimetry and the temperature dependence of stability constants, these enthalpy data will not be analyzed further. Stability constants for Eu(BrO₃)²⁺ from these two studies differ by a factor of three, with the values of Roulet and Chenaux²³⁴ being larger. Some of this difference arises because Morris and Tharwat²³⁶ allowed for Eu(BrO₃)₂+ formation whereas Roulet and Chenaux²³⁴ did not. Insufficient data were presented to allow recalculations on a consistent basis. The RE-(BrO₃)₃·9H₂O crystals¹⁵⁸ contain only water surrounding the RE³⁺, so complexes in solution are assumed to be outer sphere. Thus the ion size was chosen to be the sum of the anion + cation + water radii, and activity coefficients were calculated with the extended Debye-Hückel equation recommended by Choppin and Bertha. ²³⁵ Then, $\ln K_1 = 2.95 \pm 0.40$, the standard Gibbs energy of complex formation is $-RT \ln K_1 = -7.32 \pm$ 0.99, and $\Delta G^{\circ}_{f,298.15}(\text{Eu}(\text{BrO}_3)^{2+}(\text{aq})) = -7.32 - 576.2 +$ $1.5 = -582.0 \pm 7.3 \text{ kJ mol}^{-1}$. No attempt was made to analyze stability constant data for Eu(BrO₃)₂⁺ since it has a reported temperature dependence opposite Eu-(BrO₃)²⁺, which seems unlikely. Morris and Tharwat²³⁶ found that the Eu(ClO₃)²⁺ stability constants were independent of temperature, whereas Roulet and Chenaux²³⁴ found they decreased by a factor of four when the temperature was increased from 275 to 313 K. Heats of complex formation from these two studies are 0 and -21 ± 8 kJ mol⁻¹, whereas direct calorimetry gave -6.3 ± 1.7 kJ mol⁻¹.²³⁷ Additional data will be required before thermodynamic values are recommended for this system. ### 3. Europium Phosphite and Phosphate Complexes Barnes^{241a} measured the stability constant for Eu($\rm H_2PO_2$)²⁺ at 298 K using absorption spectra. Measurements were for ionic strengths of 0.042–0.065 mol L⁻¹, and extrapolation to infinite dilution by Davies' equation gave $K_1 = 186 \pm 5 \, \rm mol^{-1}$ L. Although enthalpy data are available for the $\rm H_2PO_2^-$ ion,²⁷⁹ we could find no free energy of formation so we cannot utilize these results. Eu($\rm H_2PO_2$)₃· $\rm H_2O$ has a layered structure with Eu ions bound through hypophosphite ions,³⁴⁰ and it is conceivable that polymeric structures may also form in aqueous solution. Borisov et al. ²⁴⁰ reported stability constants at I = 0.2 mol L⁻¹ for RE(H₂PO₄)²⁺, where RE = Ce, Pm, and Y. Since only three REE were studied and Y varies in its "position" in the RE series with anion, no attempt was made to estimate a value for Eu. #### 4. Europium Nitrate Complexes The stability constant of $Eu(NO_3)^{2+}$ has been reported in numerous studies. 207,210,212,215,216,228,253,254,260,261 A wide variety of techniques have been used, including spectroscopic methods, liquid extraction, and ion exchange. Most of these studies are in reasonable agreement. Three studies were made of the tempera- ture dependence of the equilibrium, 207,253,261 and the reaction was exothermic (but the ΔH values differ by a factor of 4). Moulin et al.'s stability constants 207 for RE(NO₃)²⁺ are about a factor of 10 larger than values from the other studies and were rejected. Attempts have been made to separate the stability constants into inner- and outer-sphere components by spectroscopic techniques. This distinction will not be considered further since we desire the total thermodynamic formation constants. Formation constants from luminescence spectra are about a factor of 2 lower than expected for that ionic strength and may just represent the inner-sphere fraction rather than the total amount of complex formation. 210 Most of the Eu(NO₃)²⁺ stability studies were measured at 298 K but some were at 295 or 303 K. The temperature dependence of K_1 is small enough that the variable temperature will be neglected. The more reliable data^{212,215,216,253,260,261} were plotted as $\ln Q_1$ vs. the square root of ionic strength, where Q_1 refers to the reaction $$Eu^{3+}(aq) + NO_3^{-}(aq) = Eu(NO_3)^{2+}(aq)$$ (42) Extrapolation to infinite dilution gave $\ln K_1 = 1.5 \pm 0.3$. Thus, the free energy change for reaction 42 is $-3.72 \pm 0.74 \text{ kJ mol}^{-1}$, and $\Delta G^{\circ}_{\text{f,298.15}}(\text{Eu(NO}_3)^{2+}(\text{aq})) = -3.72 - 576.2 - 111.34 = -691.3 \pm 7.0 \text{ kJ mol}^{-1}$. Data for the second association step are too scattered and the enthalpy of reaction for eq 42 is too media dependent to allow values to be recommended for them at this time. #### 5. Europium Chloride Complexes A number of studies have been made of the formation constant of EuCl²⁺. $^{206-208a,209,210,212-216}$ Two studies have been made of the enthalpy change from temperature dependences of $\ln K_1$ and both indicate an exothermic complex formation reaction. 206,207 Most studies were made at 298 K but range from 293 to 303 K. This small temperature difference will be neglected when stability constants are recalculated. The ionic strength was varied in these studies between 0.87 and 4.0 mol L⁻¹, but most runs were done at unit ionic strength. Using a plot of $\ln Q_1$ vs. square root of ionic strength gives a limiting value equal to $\ln K_1$. The intercept for the EuCl²+ formation constant is $\ln K_1 = 0.9 \pm 0.9$, the free energy of complex formation is -2.2 ± 2.2 kJ mol⁻¹, and $\Delta G^{\circ}_{\rm f,298.15}({\rm EuCl}^{2+}({\rm aq})) = -576.2 - 131.29 - 2.2 = -709.7 \pm 7.5$ mol⁻¹. Some of the large scatter in $\ln K_1$ may come from the variation in K_1 with different ionic media at a fixed ionic strength.²¹³ Several studies also reported values of Q_2 for $$EuCl^{2+}(aq) + Cl^{-}(aq) = EuCl_{2}^{+}(aq)$$ (43) Values are $Q_2=0.19$ at I=0.87 mol ${\rm L}^{-1},^{206}$ $Q_2=0.15-0.66$ at I=1.0 mol ${\rm L}^{-1},^{206,213,215,216}$ $Q_2=0.41\pm0.04$ at I=3.0 mol ${\rm L}^{-1},^{209}$ and $Q_2=0.19$ at I=4.0 mol ${\rm L}^{-1},^{214}$ There is no obvious trend with ionic strength, so the average of ${\rm ln}\ K_2=-1.03\pm0.8$ was used. This given error limit is 1.5 times the actual value to account for the inability to extrapolate to infinite dilution. Then, for reaction 43, the standard Gibbs energy change is -RT ${\rm ln}\ K_2=2.55\pm1.88$ kJ ${\rm mol}^{-1}$, and $\Delta G^{\circ}_{\rm f,298.15}$ (EuCl₂+(aq)) = $2.55-709.7-131.29=-838.5\pm9.4$ kJ ${\rm mol}^{-1}$. #### 6. Europium Iodide Complex For EuI²⁺, Choppin and Unrein²⁰⁶ reported that $Q_1 = 0.49 \pm 0.06$, whereas Moulin et al.²⁰⁷ reported $Q_1 = 1.7$, with both studies at I = 1.0 mol L⁻¹ and 298 K. Owing to the poor agreement, no values are recommended for that system. However, Moulin et al.'s ΔH and/or ΔG data for EuCl²⁺ and Eu(NO₃)²⁺ by the same method were in error so their EuI²⁺ data may be also. #### 7. Europium Bromide Complexes Three studies reported data for EuBr²⁺(aq), ^{206,207,209} and two of them also reported values for EuBr $_2$ ⁺-(aq). 206,209 Moulin et al.'s Q_1 values 207 at 298 K are about three times larger than Q_1 values from the other two studies. Our calculations are based on the two data sets in good agreement.^{206,209} Choppin and Unrein²⁰⁶ reported $Q_1 = 0.58 \pm 0.09$ and $Q_2 = 0.35 \pm 0.20$ at 1.0 mol L^{-1} , and Fukasawa et al.²⁰⁹ recommended Q_1 = 0.38 ± 0.02 and Q_2 = 0.59 ± 0.05 at I = 3.0 mol L^{-1} . Kozachenko et al. 341 reported stability constants for PrBr2+ SmBr²⁺, HoBr²⁺, and ErBr²⁺ at $I = 3.0 \text{ mol } L^{-1}$ and 298 K. Their data indicate that Q_1 should be about 0.6-0.7 for EuBr²⁺ at this ionic strength, which further supports our choice. These data are too sparse to allow an accurate extrapolation to infinite dilution, so we assumed a concentration dependence similar to the chloride complexes. This yields $\ln K_1 \simeq 0.6 \pm 0.5$, a standard Gibbs energy of complex formation of $-RT \ln K_1 = -1.5$ $\pm 1.2 \text{ kJ mol}^{-1}$, and $\Delta G^{\circ}_{f,298.15}(\text{EuBr}^{2+}(\text{aq})) = -1.5 576.2 - 104.04 = -681.7 \pm 6.7 \text{ kJ mol}^{-1}$. Also, $\ln K_2 \simeq$ -0.8 ± 0.5 , so ΔG° for complex formation is $-RT \ln K_2$ = $2.0 \pm 1.3 \text{ kJ mol}^{-1}$ and $\Delta G^{\circ}_{f,298.15}(\text{EuBr}_{2}^{+}(\text{aq})) = 2.0 - 681.7 - 104.04 = -783.8 \pm 8.1 \text{ kJ mol}^{-1}$. #### 8. Europium Fluoride Complexes It was earlier noted that, whereas the hydrated $RECl_3$, $REBr_3$, and REI_3 salts are highly soluble in aqueous solution, the REF_3 salts have very low solubilities. Their aqueous complexes also exhibit significant differences since REF^{2+} complexes have formation constants about 10^3 larger than for the corresponding Cl^- , Br^- , and I^- salts. A number of studies have been reported of the first stability constant for EuF²⁺ formation in aqueous solution. ^{207,222,223a,b,332,334,342,343} These values are generally in fairly good agreement. Only Aziz and Lyle's data³⁴² as recalculated by Makarova et al. ³⁴³ are somewhat high ($\approx 50\%$) and were the only results rejected. The other data were plotted as $\ln Q_1$ vs. (I)^{1/2} and the intercept is $\ln K_1 = 7.70 \pm 0.16$. Thus, the standard Gibbs energy of solution is -RT $\ln K_1 = -19.1 \pm 0.4$ kJ mol⁻¹, and $\Delta G^{\circ}_{f,298.15}(\text{EuF}^{2+}(\text{aq})) = -19.1 - 576.2 - 281.74 = -877.0 \pm 6.2$ kJ mol⁻¹.
Although Moulin et al.'s²⁰⁷ stability constant at 298 K agreed with others, their enthalpy of complex formation is opposite in sign to the probably more reliable direct calorimetric determination.²²² Bilal and co-workers^{223a,b} also determined the second stability constant for $$EuF^{2+}(aq) + F^{-}(aq) = EuF_{2}^{+}(aq)$$ (44) at 298 K and I=1 mol L⁻¹. Their results are $Q_2=277\pm35$ and 264 ± 49 mol⁻¹ L. If, as for EuCl₂⁺, this constant varies little with ionic strength (at least relative to experimental error), then $-RT \ln K_2 = -13.9\pm0.4$ kJ mol⁻¹. This uncertainty limit will be increased to 6.0 kJ mol⁻¹ to account for the possible error in assuming no change with ionic strength. Thus, $\Delta G^{\circ}_{f,298.15^{-}}$ (EuF₂⁺(aq)) = -13.9 - 877.0 - 281.74 = -1172.7 \pm 13 kJ mol⁻¹. Bilal and Koss²²⁴ also reported a formation constant for Eu(OH)₂F(aq) at I = 1.0 mol L⁻¹ and 298 K. Since their solutions also contained H₂PO₄⁻ and HPO₄²⁻, which could also be complexing with the Eu³⁺, we did not analyze these data. #### 9. Europium Carbonate Complexes Eu³⁺ reacts with CO₃²⁻ in basic aqueous solution by the reactions $$Eu^{3+}(aq) + CO_3^{2-}(aq) = Eu(CO_3)^{+}(aq)$$ (45) $$Eu(CO_3)^+(aq) + CO_3^{2-}(aq) = Eu(CO_3)_2^-(aq)$$ (46) $$Eu(CO_3)_2^-(aq) + CO_3^2(aq) = Eu(CO_3)_3^3(aq)$$ (47) $$\text{Eu}(\text{CO}_3)_3^{3-}(\text{ag}) + \text{CO}_3^{2-}(\text{ag}) = \text{Eu}(\text{CO}_3)_4^{5-}(\text{ag})$$ (48) Lundqvist²⁴³ used liquid extraction to determine ln $Q_1 = 13.65 \pm 0.12$ and $\ln Q_2 = 11.03 \pm 0.18$, for Eu-(CO₃)_n³⁻²ⁿ at 298 K and I = 1 mol L⁻¹. He also cited a value of β_4 at I=2.5 mol L⁻¹ from a thesis by Dumonceau.²⁴⁴ Here β_4 is the cumulative formation constant; i.e., $\beta_4=Q_1Q_2Q_3Q_4$. However, this value of β_4 seems too small when compared to Q_1 , Q_2 , and Q_3 for various REE,²⁴³ so the β_4 data were not analyzed. It is difficult to correct the Q_1 and Q_2 values to infinite dilution with any degree of confidence. However, data for $Eu(SO_4)^+$ and $Eu(SO_4)_2^-$, which have the same charges as Eu(CO₃)⁺ and Eu(CO₃)₂⁻, respectively, indicate that extrapolation to infinite dilution from I =1 mol L⁻¹ increases Q_1 by roughly a factor of 165 and Q_2 by about a factor of 4. We will use these approximations for our calculations with an assumed 30% uncertainty. Then, $-RT \ln K_1 = -46.5 \pm 0.9 \text{ kJ mol}^{-1}$, $\Delta G^{\circ}_{f,298.15}(\text{Eu}(\text{CO}_3)^+(\text{aq})) = -46.5 - 576.2 - 527.8 =$ $-1150.5 \pm 7.2 \text{ kJ mol}^{-1}$, $-RT \ln K_2 = -30.8 \pm 1.1 \text{ kJ}$ mol⁻¹, and $\Delta G^{\circ}_{f,298.15}(\text{Eu}(\text{CO}_3)_2^{-}(\text{aq})) = -30.8 - 1150.5$ $-527.9 = -1709.2 \pm 9.0 \text{ kJ mol}^{-1}$. #### 10. Europium Sulfate Complexes The stability constant for $$Eu^{3+}(aq) + SO_4^{2-}(aq) = Eu(SO_4)^{+}(aq)$$ (49) has been studied numerous times and with several different methods. $^{155,214,215,241a,245-249,251}$ Bansal et al. 215 also list several unpublished values by other workers. Techniques used include spectroscopy, ion exchange, liquid-liquid extraction, conductance measurements, and the change in solubility of Eu(IO₃)₃ with concentration of added sulfate. Plotting ln Q_1 vs. (I) $^{1/2}$ yields ln $K_1=8.27\pm0.98$. Then, the standard Gibbs energy of reaction is -RT ln $K_1=-20.5\pm2.4$ kJ mol $^{-1}$ and $\Delta G^{\circ}_{\rm f,298.15}({\rm Eu(SO_4)^+(aq)})=-20.5-576.2-744.46=-1341.2\pm5.5$ kJ mol $^{-1}$. Several values have also been reported for the second association reaction^{214,215,246,247,248} $$Eu(SO_4)^+(aq) + SO_4^{2-}(aq) = Eu(SO_4)_2^-(aq)$$ (50) Apparent stability constants for the formation of the second complex are reasonably concordant and yield ln $K_2 = 3.61 \pm 0.49$, a standard reaction Gibbs energy of -8.95 ± 1.2 kJ mol⁻¹, and $\Delta G^{\circ}_{f,298.15}(\text{Eu}(\text{SO}_4)_2^{-}(\text{aq})) =$ TABLE II Thermodynamic Data for Eu Aqueous Species at 298.15 K | $\Delta G^{\circ}_{\mathrm{f,298.15}}, \mathrm{~kJ} \\ \mathrm{~mol}^{-1}$ | $\Delta H^{\circ}_{f,295.15} \ \mathrm{kJ} \ \mathrm{mol}^{-1}$ | $S^{\circ}_{298.15}, m J \ K^{-1} mol^{-1}$ | |--|--|---| | -576.2 ± 5.3 | -604.8 ± 4.2 | -214.0 ± 3.1 | | -542.5 ± 6.8 | -527.7 ± 7.6 | -3.1 ± 11 | | -766.3 ± 6.9 | | | | -965.8 ± 16 | | | | -714.8 ± 7.8 | -814.9 ± 8.7 | -22.9 ± 36 | | -582.0 ± 7.3 | | | | -691.3 ± 7.0 | | | | -709.7 ± 7.5 | | | | -838.5 ± 9.4 | | | | -681.7 ± 6.7 | | | | -783.8 ± 8.1 | | | | -877.0 ± 6.2 | | | | -1172.7 ± 13 | | | | -1150.5 ± 7.2 | | | | -1709.2 ± 9.0 | | | | -1341.2 ± 5.5 | -1497.4 ± 6.0 | -69.4 ± 20 | | -2094.6 ± 6.9 | -2398.8 ± 8.2 | 6.9 ± 30 | | | mol^{-1} -576.2 ± 5.3 -542.5 ± 6.8 -766.3 ± 6.9 -965.8 ± 16 -714.8 ± 7.8 -582.0 ± 7.3 -691.3 ± 7.0 -709.7 ± 7.5 -838.5 ± 9.4 -681.7 ± 6.7 -783.8 ± 8.1 -877.0 ± 6.2 -1172.7 ± 13 -1150.5 ± 7.2 -1709.2 ± 9.0 -1341.2 ± 5.5 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $-8.95 - 1341.2 - 744.5 = -2094.6 \pm 6.9 \text{ kJ mol}^{-1}$. Bilal and $\mathrm{Koss^{249}}$ claimed that $\mathrm{Eu(SO_4)_3^{3^-}}$ forms rather than $\mathrm{Eu(SO_4)_2^-}$. Since the other studies 214,215,247,248 reported $Eu(SO_4)_2^-$ instead, no analysis was made for $Eu(SO_4)_3^3$. Five of the above studies also report enthalpies of reaction corresponding to reaction 49.246-248,250,251 They are in fairly good agreement and show no trend with concentration, so they were averaged to yield the recommended value of $17.0 \pm 1.4 \text{ kJ mol}^{-1}$. Thus, $\Delta H^{\circ}_{f,298.15}(\text{Eu}(\text{SO}_4)^+(\text{aq})) = 17.0 - 604.8 - 909.60 =$ $-1497.4 \pm 6.0 \text{ kJ mol}^{-1}$, $\Delta S^{\circ}_{f,298.15}(\text{Eu}(\text{SO}_4)^{+}(\text{aq})) = -524.1 \pm 18.5 \text{ J K}^{-1} \text{ mol}^{-1}$, and $S^{\circ}_{298.15}(\text{Eu}(\text{SO}_4)^{+}(\text{aq})) = -524.1 + 77.81 + 32.05 + 2(205.04) - 65.285 = -69.4$ $\pm 20 \text{ J K}^{-1} \text{ mol}^{-1}$. Two reported values for the enthalpy of reaction 50 are $10.0 \text{ kJ} \text{ mol}^{-1}$ at $I = 2.0 \text{ mol L}^{-1}$ 246 and $6.3 \pm 0.4 \text{ kJ}$ mol⁻¹ in dilute solution.²⁴⁷ The data are too sparse to determine the dependence on ionic strength, so the average of 8.2 \pm 1.9 was accepted. Then, $\Delta H^{\circ}_{f,298.15}$ $(Eu(SO_4)_2^-(aq)) = 8.2 - 1497.4 - 909.60 = -2398.8 \pm 8.2$ kJ mol⁻¹, $\Delta S^{\circ}_{f,298.15}(Eu(SO_4)_2^{-}(aq)) = -1020.4 \pm 29 \text{ J K}^{-1}$ mol^{-1} , and $S^{\circ}_{298.15}(\text{Eu}(SO_4)_2^{-}(\text{aq})) = -1020.4 + 77.81 +$ $2(32.05) + 4(205.04) + 65.285 = 6.9 \pm 30 \text{ J K}^{-1} \text{ mol}^{-1}$ Table II summarizes thermodynamic data for these aqueous species. ### V. Recommendations This report is a review of the thermodynamics of Eu, its oxides, sulfides, chlorides, oxychlorides, hydroxides, hydroxychlorides, fluorides, bromides, halates, sulfates, nitrates, carbonates, and a number of related aqueous species. The publication of new thermodynamic data for several of the above systems would be very desirable to improve the thermodynamic data base. Heat capacity data for the solid oxides Eu₂O₃ (especially the cubic form) and Eu₃O₄ are needed to yield more reliable entropy values. Enthalpies of solution of Eu(OH)₃(s) in acid would serve as a check on the Gibbs energy results obtained from solubility data. More extensive heat capacity, solubility, and enthalpy of solution data for Eu₂(SO₄)₃·8H₂O and EuF₃ are also needed. In addition, further studies of complex formation for several of the aqueous species as a function of ionic strength and temperature (especially the carbonates) would be desirable. Even more important are additional enthalpies of solution of EuCl₃(s) in dilute HCl, since all of the enthalpies of formation for aqueous species are based on a single determination of this quantity (as described in section IV.D). #### VI. Acknowledgments This work was performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under contract number W-7405-ENG-48. The author is grateful to Dana Isherwood for noting the need for a thorough europium thermodynamic data base and for support and encouragement. Special thanks are due to Donald G. Miller for a critical reading of this manuscript and to Pam Ruiz. Sharon Kerst, and Sue Frumenti for the word processing of this manuscript. This paper is dedicated to the memory of Professor F. H. Spedding, to whom I owe much of my interest in rare earth chemistry. Registry No. Eu, 7440-53-1. #### VII. References - (1) (a) Mellor, J. W. "A Comprehensive Treatise on Inorganic and Theoretical Chemistry"; Longmans, Green and Co.: London, 1924; Vol. V, pp 496-709. (b) Goldschmidt, Z. B. In "Handbook on the Physics and Chemistry of Rare Earths" Gschneidner, K. A., Jr., Eyring, L., Eds.; North-Holland: Amsterdam, 1978; Vol. 1, Chapter 1, pp 1-171. (2) McCoy, H. N. J. Am. Chem. Soc. 1935, 57, 1756. (3) Marsh, J. K. J. Chem. Soc. 1943, 531. (4) Powell, J. E. In "Progress in the Science and Technology of - the Rare Earths"; Eyring, L., Ed.; McMillan: New York, - 1964; Vol. 1, pp 62-84. Powell, J. E. In "Handbook on the Physics and Chemistry of Rare Earths"; Gschneidner, K. A., Jr., Eyring, L., Eds.; North-Holland: Amsterdam, 1979; Vol. 3, Chapter 22, pp - Weaver, B. In "Progress in the Science and Technology of the Rare Earths"; Eyring, L., Ed.; McMillan: New York, 1964; Vol.
1, pp 85-88 - Vol. 1, pp 85-88. (7) Peppard, D. F. In "Progress in the Science and Technology of the Rare Earths", Eyring, L., Ed.; McMillan: New York, 1964; Vol. 1, pp 89-109. (8) Kaczmarek, J. In "Industrial Applications of Rare Earth Elements"; Gschneidner, K. A., Jr., Ed.; American Chemical Society. Washington, D.C., 1981; ACS Symp. Ser. No. 164, pp 125-166. - pp 135-166. (9) Töpper, W. "Gmelin Handbuch der Anorganischen Chemie"; Springer-Verlag: Berlin, 1979; System No. 39, Vol. A4. (10) Henderson, P., Ed. "Rare Earth Element Geochemistry"; - Henderson, P., Ed. "Kare Earth Element Geochemistry; Elsevier: Amsterdam, 1984. Haskin, L. A.; Paster, T. P. In "Handbook on the Physics and Chemistry of Rare Earths"; Gschneidner, K. A., Jr., Eyring, L., Eds.; North-Holland; Amsterdam, 1979; Vol. 3, pp 1-80. Turner, D. R.; Whitfield, M. Nature (London) 1979, 281, 468. Guichard, F.; Church, T. M.; Treuil, M.; Jaffrezic, H. Geochim Corrothim Acta 1979, 423 (1982). - chim. Cosmochim. Acta 1979, 43, 983. - (14) Sinha, S. P. In "Structure and Bonding"; Dunitz, J. D. et al., Eds.; Springer-Verlag: Berlin, 1976; Vol. 25, pp 69-149. (15) Taylor, M. D. Chem. Rev. 1962, 62, 503. (16) Burgess, J.; Kijowski, J. In "Advances in Inorganic Chemistry - and Radiochemistry"; Academic Press: New York, 1981; Vol. - 24, pp 57-114. (17) (a) Brown, D. "Halides of the Lanthanides and Actinides"; (17) (a) Frankers of the Lanthantees and Actinities; Wiley-Interscience: London, 1968. (b) Greis, O.; Haschke, J. M. In "Handbook on the Physics and Chemistry of Rare Earths"; Gschneidner, K. A., Jr.; Eyring, L., Eds.; North-Holland: Amsterdam, 1982; Vol. 5, pp 387-460. (18) Flachsbart, I.; Hein, H.; Kirschstein, G.; Koch, E.; Kreuzbichler, I.; Kuhn, P.; Lehl, H.; Vetter, U. "Gmelin Handbook of Inorganic Chemistry"; Springer-Verlag: Berlin, 1982; System No. 29, Vol. C40. - System No. 39, Vol. C4a. - (19) Czack, G.; Flachsbart, I.; Hein, H.; Koch, E.; Kreuzbichler, I.; Kuhn, P.; Lehl, H.; Vetter, U. "Gmelin Handbook of Inorganic Chemistry"; Springer-Verlag: Berlin, 1982; System No. 39, Vol. C4b. (20) "Gmelin Handbuch der Anorganischen Chemie"; Springer- - Verlag: Berlin, 1977; System No. 39, Vol. C5. (21) Holley, C. E., Jr.; Huber, E. J., Jr.; Baker, F. B. In "Progress in the Science and Technology of the Rare Earths"; Eyring, L., Ed.; Pergamon Press: Oxford, 1968; Vol. 3, pp 343-433. - (22) Eyring, L. In "Handbook on the Physics and Chemistry of Rare Earths"; Gschneidner, K. A., Jr., Eyring, L., Eds.; North-Holland: Amsterdam, 1979; Vol. 3, pp 337-399. (23) Golubkov, A. V.; Goncharova, E. V.; Zhuze, V. P.; Loginov, G. M.; Sergeeva, V. M.; Smirnov, I. A. "Physical Properties of the Chalcogenides of Rare Earth Elements"; Technical Information Center USDOE: NITIS Springfield VA 1077. Information Center USDOE: NTIS, Springfield, VA, 1977; English translation. - English translation. (24) Wachter, P. In "Handbook on the Physics and Chemistry of Rare Earths"; Gschneidner, K. A., Jr., Eyring, L., Eds.; North-Holland: Amsterdam, 1979; Vol. 2, pp 507-574. (25) Czack, G.; Hein, H.; Hinz, I.; Bergmann, H.; Kuhn, P. "Gmelin Handbook of Inorganic Chemistry"; Springer-Verlag: Berlin, 1983; System Number 39, Vol. C7. (26) Herman, H. B.; Rairden, J. R. In "Encyclopedia of Electrochemistry of the Elements"; Bard, A. J., Ed.; Marcel Dekker. New York, 1976; Vol. VI, Chapter VI-2, pp 33-62. (27) Carnall, W. T.; Fields, P. R.; Rajnak, K. J. Chem. Phys. 1968, 49, 4450. - (28) Carnall, W. T. In "Handbook on the Physics and Chemistry of Rare Earths"; Gschneidner, K. A., Jr., Eyring, L., Eds., North-Holland: Amsterdam, 1979; Vol. 3, Chapter 24, pp 71 - 208 - (29) Yatsimirskii, K. B.; Davidenko, N. K. Coord. Chem. Rev. - 1979, 27, 223. (30) Marcus, Y. In "Gmelin Handbook of Inorganic Chemistry"; Springer-Verlag: Berlin, 1981; System Number 39, Part D-3, - pp 1-14. (31) Haase, V.; Kugler, H. K.; Lehl-Thalinger, M.; Trobisch-Raussendorf, U. "Gmelin Handbuch der Anorganischen Chemie"; Springer-Verlag: Berlin, 1979; System No. 39, Vol. - (35) Gerstein, B. C.; Jelinek, F. J.; Mullaly, J. R.; Shickell, W. D.; Spedding, F. H. J. Chem. Phys. 1967, 47, 5194. (36) Teaney, D. T.; Moruzzi, V. L. In "Les Eléments des Terres Rares"; Centre National de la Recherche Scientifique: Paris, 1007, Paris 2011, 1408 1970; Part 2, pp 131-148. (37) Nereson, N. G.; Olsen, C. E.; Arnold, G. P. Phys. Rev. 1964, - *135*, A176. - Cohen, R. L.; Hufner, S.; West, K. W. In "Les Éléments des Terres Rares"; Centre National de la Recherche Scientifique: Paris, 1970; Part 2, pp 101-108. Lounasmaa, O. V. Phys. Rev. 1966, 143, 399. Trulson, O. C.; Hudson, D. E.; Spedding, F. H. J. Chem. Phys. 1961, 35, 1018 - Phys. 1961, 35, 1018. (41) Habermann, C. E.; Daane, A. H. J. Chem. Phys. 1964, 41, - (42) Berg, J. R.; Spedding, F. H.; Daane, A. H. "The High Temperature Heat Contents and Related Thermodynamic Properties of Lanthanum, Praseodymium, Europium, Ytterbium, and Yttrium"; U.S.A.E.C. Document IS-327: Ames Laboratory, 1961; 35 pp - (43) Alekseev, N. I.; Kaminskii, D. L. Sov. Phys. Tech. Phys. (Engl. Transl.) 1965, 9, 1177. (44) Zmbov, K. F.; Margrave, J. L. J. Phys. Chem. 1966, 70, 3014. (45) Ackermann, R. J.; Rauh, E. G.; Thorn, R. J. J. Chem. Phys. - 1976, 65, 1027. - (46) Bedford, R. G.; Catalano, E. J. Solid State Chem. 1971, 3, - (47) Coutures, J.-P.; Verges, R.; Foëx, M. Rev. Int. Hautes Temp. - (48) Reed, T. B.; Fahey, R. E. J. Cryst. Growth 1971, 8, 337. (49) Kharakoz, A. E.; Durnyakova, T. B.; Philipenko, G. P. Deposited Document 1978, VINITI 2042-78; Chem. Abstr. 1979, - 91, 203596a (50) Drofenik, M.; Golic, L.; Kolar, D. J. Cryst. Growth 1974, 21, - (51) (a) Bennett, S. L.; Finch, C. B.; Yakel, H. L.; Brynestad, J.; Clark, G. W. J. Cryst. Growth 1977, 41, 309. (b) Yo, C. H.; Ko, S. K.; Won, H. J.; Choi, J. S. J. Phys. Chem. Solids 1984, - (52) Eick, H. A.; Baenziger, N. C.; Eyring, L. J. Am. Chem. Soc. - 1956, 78, 5147. (53) Haschke, J. M.; Eick, H. A. J. Phys. Chem. 1969, 73, 374. (54) McCarthy, G. J.; White, W. B. J. Less-Common Met. 1970, 22, 409. - (55) Leger, J. M.; Yacoubi, N.; Loriers, J. J. Solid State Chem. - 1981, 36, 261. (56) Brauer, G. In "Progress in the Science and Technology of Rare Earths"; Eyring, L., Ed.; Pergamon Press: Oxford, 1968; Vol. 3, pp 434–458. - (a) Haschke, J. M.; Eick, H. A. J. Phys. Chem. 1968, 72, 4235. (b) Ignat'eva, N. I.; Bamburov, V. G. Inorg. Mater. (Engl. - Transl.) 1970, 6, 132. (58) Panish, M. B. J. Chem. Phys. 1961, 34, 1079. - (59) Kordis, J.; Gingerich, K. A. J. Chem. Phys. 1977, 66, 483. (60) Smoes, S.; Drowart, J.; Welter, J. W. J. Chem. Thermodyn. **1977**, *9*, 275 - (61) Shafer, M. W.; Torrance, J. B.; Penney, T. J. Phys. Chem. Solids 1972, 33, 2251 - (62) Ames, L. L.; Walsh, P. N.; White, D. J. Phys. Chem. 1967, 71, 2707 - (63) Hildenbrand, D. L.; Murad, E. Z. Naturforsch. A: Phys., Phys. Chem., Kosmophys. 1975, 30A, 1087. - Murad, E.; Hildenbrand, D. L. J. Chem. Phys. 1976, 65, 3250. - (65) Dirscherl, R.; Michel, K. W. Chem. Phys. Lett. 1976, 43, 547. - (66) Pedley, J. B.; Marshall, E. M. J. Phys. Chem. Ref. Data 1983, 12, 967 - (67) Dillin, D. R.; Milligan, W. O. J. Appl. Crystallogr. 1973, 6, 492. - (68) Swanson, B. I.; Machell, C.; Beall, G. W.; Milligan, W. O. J. - (60) Swainski, B. I., Machiel, C., Bealt, G. W., Milligali, W. O. S. Inorg. Nucl. Chem. 1978, 40, 694. (69) Mullica, D. F.; Milligan, W. O.; Beall, G. W. J. Inorg. Nucl. Chem. 1979, 41, 525. (70) Klevtsov, P. V.; Sheina, L. P. Inorg. Mater. (Engl. Transl.) - 1965, 1, 838. - (71) Klevtsov, P. V.; Kharchenko, L. Yu.; Lysenina, T. G.; Grankina, Z. A. Russ. J. Inorg. Chem. (Engl. Transl.) 1972, 17, 1512. - (72) Dem'yanets, L. N.; Bukin, V. I.; Emel'yanova, E. N.; Ivanov, V. I. Sov. Phys. Crystallogr. (Engl. Transl.) 1974, 18, 806. (73) Aksel'rud, N. V.; Ermolenko, V. I. Russ. J. Inorg. Chem. - (Engl. Transl.) 1961, 6, 397. - (Engl. Transl.) 1961, 6, 397. (74) Mironov, N. N.; Polyashov, I. M. Russ. J. Inorg. Chem. (Engl. Transl.) 1970, 15, 1. (75) Ambrozhii, N. M.; Dvornikova, L. M.; Lazareva, L. S. Russ. J. Inorg. Chem. (Engl. Transl.) 1966, 11, 46. (76) Bärnighausen, H. Z. Anorg. Allg. Chem. 1966, 342, 233. (77) Sommers, J. A.; Westrum, E. F., Jr. J. Chem. Thermodyn. 1977, 2, 1 - 1977, 9, 1. Ball, J.; Jenden, C. M.; Lyle, S. J.; Westall, W. A. J. Less-Common Met. 1983, 95, 161. Kulagin, N. M.; Laptev, D. M. Russ. J. Phys. Chem. (Engl. Transl.) 1976, 50, 483; VINITI 3524-75. (a) Laptev, D. M.; Kulagin, N. M.; Astakhova, I. S. Russ. J. Inorg. Chem. (Engl. Transl.) 1975, 20, 1108. (b) Laptev, D. M.; Astakhova, I. S.; Kulagin, N. M.; Bomko, D. M. Russ. J. Inorg. Chem. (Engl. Transl.) 1976, 21, 643. DeKock, C. W.; Wesley, R. D.; Radtke, D. D. High Temp. Sci. 1972, 4, 41. - (82) Beck, H. P. Z. Anorg. Allg. Chem. 1979, 459, 72. (83) Hodorowicz, E. K.; Hodorowicz, S. A.; Eick, H. A. J. Solid - (84) (a) Hodorowicz, E. K., Hodorowicz, S. A., Eick, H. A. J. Solid (a) Hodorowicz, E. K., Hodorowicz, S. A.; Eick, H. A. J. Solid (b) Sanskar J. B. Friedt, J. M. State Chem. 1984, 52, 156. (b) Sanchez, J. P.; Friedt, J. M.; Bärnighausen, H.; van Duyneveldt, A. J. Inorg. Chem. 1985, 24, 408 - 44, 408. Laptev, D. M.; Kulagin, N. M.; Astakhova, I. S.; Tolstoguzov, N. V. Russ. J. Inorg. Chem. (Engl. Transl.) 1981, 26, 553. Astakhova, I. S.; Laptev, D. M.; Kulagin, N. M. Russ. J. Inorg. Chem. (Engl. Transl.) 1977, 22, 923. Astakhova, I. S.; Laptev, D. N.; Kulagin, N. M. Russ. J. Inorg. Chem. (Engl. Transl.) 1977, 22, 1087. Polyachenok, O. G.; Novikov, G. I. Russ. J. Inorg. Chem. (Engl. Transl.) 1964. 9, 429. - Engl. Transl.) 1964, 9, 429. - (89) Hastie, J. W.; Ficalora, P.; Margrave, J. L. J. Less-Common Met. 1968, 14, 83. - (90) Moriarty, J. L. J. Chem. Eng. Data 1963, 8, 422. (91) Myers, C. E.; Graves, D. T. J. Chem. Eng. Data 1977, 22, 440. (92) Schiffmacher, G. C. R. Hebd. Séances Acad. Sci. 1965, 260, - (93)Polyachenok, O. G.; Novikov, G. I. Russ. J. Inorg. Chem. - (Engl. Transl.) 1963, 8, 1378. (94)
Hariharan, A. V.; Eick, H. A. High Temp. Sci. 1972, 4, 91. (95) Chervonnyi, A. D. Russ. J. Phys. Chem. (Engl. Transl.) 1977, - 51, 672. (96) Chervonnyi, A. D. Russ. J. Phys. Chem. (Engl. Transl.) 1977, - (97) Korshunov, B. G.; Drobot, D. V.; Borodulenko, G. P.; Galchenko, I. E. Russ. J. Inorg. Chem. (Engl. Transl.) 1966, 11, - (98) Meyer, G.; Ax, P.; Cromm, A.; Linzmeier, H. J. Less-Common - Meyer, G., A., T., Grand, T., Met. 1984, 98, 323. (a) Morss, L. R. J. Phys. Chem. 1971, 75, 392. (b) Greis, O.; Cader, M. S. R. Thermochim. Acta 1985, 87, 145. (c) Petzel, T. J. Less-Common Met. 1985, 108, 241. (d) Bedford, R. G.; T. J. Less-Common Met. 1985, 108, 241. (d) Bedford, R. G.; G. M. S. R. Thermochim. Acta 1985, 108, 241. (d) Bedford, R. G.; G. M. S. R. Thermochim. 1970, 2, 585. (e) Asprey. T. J. Less-Common Met. 1303, 100, 241. (a) Dediction, a. S., Catalano, E. J. Solid State Chem. 1970, 2, 585. (e) Asprey, L. B.; Keenan, T. K.; Kruse, F. H. Inorg. Chem. 1964, 3, 1137. (f) Haschke, J. M. J. Chem. Thermodyn. 1973, 5, 283. (g) Deline, T. A.; Westrum, E. F., Jr.; Haschke, J. M. J. Chem. - Thermodyn. 1975, 7, 671. Graeber, E. J.; Conrad, G. H.; Duliere, S. F. Acta Crystallogr. - 1966, 21, 1012. (101) Ivanov, V. I. Sov. Phys. Crystallogr. (Engl. Transl.) 1969. - (102) Bel'skii, N. K.; Struchkov, Yu. T. Sov. Phys. Crystallogr. (Engl. Transl.) 1965, 10, 15. - (103) Haase, A.; Brauer, G. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1975, B31, 290. (104) Wendlandt, W. W. J. Inorg. Nucl. Chem. 1959, 9, 136. (105) Haeseler, G.; Matthes, F. J. Less-Common Met. 1965, 9, 133. - (106) Lyle, S. J.; Westall, W. A. Thermochim. Acta 1983, 68, 51. (107) Sokolova, L. G.; Lapitskaya, A. V.; Bol'shakov, A. F.; Pirkes, S. B.; Abalduev, B. V. Russ. J. Inorg. Chem. (Engl. Transl.) 1981, 26, 936 - Wendlandt, W. W.; Sewell, R. G. Tex. J. Sci. 1961, 13, 231 - (109) Haase, A.; Brauer, G. Z. Anorg. Allg. Chem. 1979, 450, 36. (110) Baev, A. K.; Novikov, G. I. Russ. J. Inorg. Chem. (Engl. - (110) Baev, A. K.; Novikov, G. I. Russ. J. Inorg. Chem. (Engl. Transl.) 1965, 10, 1337. (111) Hariharan, A. V.; Eick, H. A. High Temp. Sci. 1973, 5, 269. (112) (a) Bunda, V. V.; Shtlikha, M. V.; Golovei, V. M. Russ. J. Inorg. Chem. (Engl. Transl.) 1984, 29, 1741. (b) Tanguy, B.; Frit, B.; Levasseur, A.; Olazcuaga, R.; Fouassier, C. C. R. Séances Acad. Sci., Sér. C 1970, 270, 1239. (113) (a) Batsanova, L. R.; Lukina, L. V. Russ. J. Inorg. Chem. (Engl. Transl.) 1972, 17, 629. (b) Posluszny, J. V.; Brittain, H. G. Thermochim. Acta 1985, 83, 271. (c) Abdurakhmanov, Sh. A.; Nikolaev, N. S.; Dzhuraev, Kh. Sh. Izv. Akad. Nauk. Tadzh. SSR, Otd. Fiz.-Mat. Geol.-Khim. Nauk 1973, (3), 57. (d) Alikberova, L. Yu.; Yastrebove, L. F.; Stepin, B. D. Russ. J. Inorg. Chem. (Engl. Transl.) 1977, 22, 1079. (e) Kwestroo, W.; Van Hal, H. A. M. J. Inorg. Nucl. Chem. 1976, 38, 1019. (f) Brown, D.; Fletcher, S.; Holah, D. G. J. Chem. Soc. A 1968, 1889. (g) Mayer, I.; Zolotov, S. J. Inorg. Nucl. Chem. 1965, 27, 1905. - 1965, 27, 1905. (114) Nagai, S.-I.; Shinmei, M.; Yokokawa, T. J. Inorg. Nucl. Chem. 1974, 36, 1904. - (115) Smoes, S.; Coppens, P.; Bergman, C.; Drowart, J. Trans. Faraday Soc. 1969, 65, 682 - (116) Hariharan, A. V.; Eick, H. A. High Temp. Sci. 1971, 3, 123. (117) Kaldis, E. J. Cryst. Growth 1974, 24/25, 53. - (111) Kaidis, E. J. Cryst. Growth 1974, 24/20, 53. (118) (a) Kaldis, E. J. Cryst. Growth 1972, 17, 3. (b) Eliseev, A. A. Russ. J. Inorg. Chem. (Engl. Transl.) 1984, 29, 945. (119) Lobachevskaya, N. I.; Bamburov, V. G.; Finkel'shtein, L. D.; Efremova, N. N.; Yakovleva, N. D. Inorg. Mater. (Engl. Transl.) 1976, 12, 992. (120) Gordienko, S. P.; Fenochka, B. V. Russ. J. Phys. Chem. (Engl. Transl.) 1974, 48, 291 - (120) Gordienko, S. P.; Fenochka, B. V. Russ. J. Phys. Chem. (Engl. Transl.) 1974, 48, 291. (121) (a) Mullica, D. F.; Grossie, D. A.; Boatner, L. A. Inorg. Chim. Acta 1985, 109, 105. (b) Kizilyalli, M.; Welch, A. J. E. J. Appl. Crystallogr. 1976, 9, 413. - (122) Serra, J. J.; Coutures, J.; Rouanet, A. High Temp. High Pressures 1**976**, 8, 337. - (123) Petrov, K. I.; Vasil'eva, V. P.; Pervykh, V. G. Russ. J. Inorg. Chem. (Engl. Transl.) 1966, 11, 981. (124) Bamberger, C. E.; Haire, R. G.; Begun, G. M.; Ellingboe, L. - . Inorg. Chem. Acta 1984, 94, 49. - (125) Head, E. L. Inorg. Nucl. Chem. Lett. 1966, 2, 33 - (126) Caro, P.; Lemaître-Blaise, M.; Trombe, F. C. R. Séances Acad. Sci., Sér. C. 1968, 267, 1594. (127) Sklyarenko, Yu. S.; Ruzaikina, L. V. Russ. J. Inorg. Chem. - (127) Sklyarenko, Yu. S.; Ruzaikina, L. V. Russ. J. Inorg. Chem. (Engl. Transl.) 1970, 15, 399. (128) Karapet'yants, M. Kh.; Maier, A. I.; Bas'kova, N. A. Inorg. Mater. (Engl. Transl.) 1977, 13, 1032. (129) (a) Chai, B. H. T.; Mroczkowski, S. J. Cryst. Growth 1978, 44, 84. (b) Kutty, T. R. N.; Tareen, J. A. K.; Mohammed, I. J. Less-Common Met. 1985, 105, 197. (130) Head, E. L.; Holley, C. E., Jr. Los Alamos, NM, 1962, U.S. A.E.C. Document LADC-5579. (131) Faucherra, J.: Fromaga, F.: Gobron, B. Rev. Chim. Minér. - (131) Faucherre, J.; Fromage, F.; Gobron, R. Rev. Chim. Minér. 1966, 3, 953. (132) Caro, P.; Lemaître-Blaise, M. C. R. Séances Acad. Sci., Sér. - (132) Caro, P.; Lemaitre-Blaise, M. C. R. Séances Acad. Sci., Sér. C 1969, 269, 687. (133) Mironov, K. E.; Popov, A. P.; Vorob'eva, V. Ya.; Grankina, Z. A. Russ. J. Inorg. Chem. (Engl. Transl.) 1971, 16, 1476. (134) Ivanov-Emin, B. N.; Odinets, Z. K.; Zaitsev, B. E.; Akimov, V. M.; Arias de Pasqual, M.; Ezhov, A. I. Russ. J. Inorg. Chem. (Engl. Transl.) 1974, 19, 1266. (135) Odent, G.; Charetteur, E. Duperray, M.-H. Rev. Chim. Minér. 1975, 12, 17. (136) Wandbadt, W. W. Book, L. L. Linorg, Nucl. Cham. 1960. - (136) Wendlandt, W. W.; Bear, J. L. J. Inorg. Nucl. Chem. 1960, - (137) Håjek, B.; Helečková, E. Sb. Vys. Sk. Chem.-Technol. Praze, Anorg. Chem. Technol. 1980, B25, 97. (138) Bünzli, J.-C. G.; Moret, E.; Yersin, J.-R. Helv. Chim. Acta - 1978, 61, 762. - (139) Odinets, Z. K.; Vargas Ponse, O.; Zaitsev, B. E.; Molodkin, A. K. Russ. J. Inorg. Chem. (Engl. Transl.) 1983, 28, 1580. (140) Siekierski, S.; Mioduski, T.; Salomon, M. "Solubility Data - Series Volume 13. Scandium, Yttrium, Lanthanum and Lanthanide Nitrates"; Pergamon Press: Oxford, 1983. (141) Rard, J. A. J. Chem. Thermodyn. 1984, 16, 921. (142) Habboosh, D. A.; Kerridge, D. H.; Tariq, S. A. Thermochim. - Acta 1983, 65, 53. - (143) Habboush, D. A.; Kerridge, D. H. Thermochim. Acta 1984, - (144) Bünzli, J.-C. G.; Klein, B.; Pradervand, G.-O.; Porcher, P. Inorg. Chem. 1983, 22, 3763. - (145) Ivanov, V. I. Sov. Phys. Crystallogr. (Engl. Transl.) 1965, 9. 553 - (146) Wendlandt, W. W. J. Inorg. Nucl. Chem. 1958, 7, 51. (147) (a) Duval, C. "Inorganic Thermogravimetric Analysis" (Engl. Transl.), 2nd rev. ed.; Elsevier: Amsterdam, 1963. (b) Pokrovskii, A. N.; Kovba, L. M. Russ. J. Inorg. Chem. (Engl. Transl.) - Transl.) 1976, 21, 305. (148) (a) Iskhakova, L. D.; Plyushchev, V. E.; Berlin, N. B. Russ. J. Inorg. Chem. (Engl. Transl.) 1973, 18, 363. (b) Degtyarev, P. A.; Pokrovskii, A. N. Russ. J. Inorg. Chem. (Engl. Transl.) 1984, 29, 1219. - (149) Spedding, F. H.; Jaffe, S. J. Am. Chem. Soc. 1954, 76, 882. (150) Koz'min, Yu. A.; Shul'gin, L. P.; Ponomarev, V. D. Russ. J. - (150) Köz min, Yu. A.; Shul gin, L. P.; Ponomarev, V. D. Russ. J. Inorg. Chem. (Engl. Transl.) 1964, 9, 1367. (151) (a) Zaidi, S. A. A.; Zaidi, S. R. A.; Shakir, M.; Aslam, M.; Siddiqi, Z. A. Polyhedron 1985, 4, 365. (b) Petrov, K. I.; Kharakoz, A. E.; Popova, I. A.; Durnyakova, T. B.; Romashov, E. Russ. J. Inorg. Chem. (Engl. Transl.) 1977, 22, 1158. (152) Bel'kova, M. M.; Alekseenko, L. A. Russ. J. Inorg. Chem. (Engl. Transl.) 1965, 10, 736. - (Engl. Transl.) 1965, 10, 747. (153) Cucinotta, V.; Gurrieri, S.; Musumeci, S.; Sammartano, S. Thermochim. Acta 1976, 17, 375. - Thermochim. Acta 1976, 17, 375. (154) (a) Zaitseva, L. L.; Konarev, M. I.; Velichko, A. V.; Sukhikh, A. I.; Chebotarev, N. T. Russ. J. Inorg. Chem. (Engl. Transl.) 1974, 19, 1461. (b) Varfolomeev, M. B.; Ivanova, E. D.; Lunk, H. J.; Hilmer, W.; Shamrai, N. B. Russ. J. Inorg. Chem. (Engl. Transl.) 1984, 29, 1711. (155) Laurie, S. H.; Monk, C. B. J. Chem. Soc. 1963, 3343. (156) Firsching, F. H.; Paul, T. R. J. Inorg. Nucl. Chem. 1966, 28, 2414 - (157) Abrahams, S. C.; Berstein, J. L.; Nassau, K. J. Solid State Chem. 1976, 16, 173. - Cnem. 1916, 16, 173. (158) Albertsson, J.; Elding, I. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1977, B33, 1460. (159) Staveley, L. A. K.; Markham, D. R.; Jones, M. R. J. Inorg. Nucl. Chem. 1968, 30, 231. (160) Spedding, F. H.; Pikal, M. J.; Ayers, B. O. J. Phys. Chem. 1966, 70, 2440. - (161) Spedding, F. H.; Saeger, V. W.; Gray, K. A.; Boneau, P. K.; Brown, M. A.; DeKock, C. W.; Baker, J. L.; Shiers, L. E.; Weber, H. O.; Habenschuss, A. J. Chem. Eng. Data 1975, 20, - (162) Spedding, F. H.; DeKock, C. W.; Pepple, G. W.; Habenschuss, - A. J. Chem. Eng. Data 1977, 22, 58. Spedding, F. H.; Rard, J. A. J. Phys. Chem. 1974, 78, 1435. Spedding, F. H.; Shiers, L. E.; Rard, J. A. J. Chem. Eng. Data 1975, 20, 66. (164) - (165) Mioduski, T.; Siekierski, S. J. Inorg. Nucl. Chem. 1975, 37, - (166) - (167)(168) - F. Radiochim. Acta 1984, 36, 191. Spedding, F. H.; Weber, H. O.; Saeger, V. W.; Petheram, H. H.; Rard, J. A.; Habenschuss, A. J. Chem. Eng. Data 1976, (169)21, 341. - (170) Rard, J. A.; Weber, H. O.; Spedding, F. H. J. Chem. Eng. Data 1977, 22, 187. - (171) Libus, Z.; Sadowska, T.; Grzelak, W. J. Solution Chem. 1984, 13, 571. - (172) (a) Choppin, G. R.; Graffeo, A. J. Inorg. Chem. 1965, 4, 1254. (b) Kanno, H.; Hiraishi, J. J. Phys. Chem. 1982, 86, 1488. (173) Reuben, J.; Fiat, D. J. Chem. Phys. 1969, 51, 4909. - (174) Grenthe, I.; Hessler, G.; Ots, H. Acta Chem. Scand. 1973, 27, - 2543. (175) (a) Hinchey, R. J.; Cobble, J. W. Inorg. Chem. 1970, 9, 917. (b) Geier, G.; Karlen, U. Helv. Chim. Acta 1971, 54, 135. (c) Marcantonatos, M. D.; Deschaux, M.; Vuilleumier, J.-J. J. Chem. Soc.,
Faraday Trans. 2 1984, 80, 1569. (176) (a) Habenschuss, A.; Spedding, F. H. J. Chem. Phys. 1980, 73, 442. (b) Narten, A. H.; Hahn, R. L. J. Phys. Chem. 1983, 87, 3193. (c) Annis, B. K.; Hahn, R. L.; Narten, A. H. J. Chem. Phys. 1985, 82, 2086. (177) Haas, Y.; Stein, G. J. Phys. Chem. 1971, 75, 3677. (178) (a) Horrocks, W. DeW., Jr.; Sudnick, D. R. J. Am. Chem. Soc. 1979, 101, 334. (b) Bryden, C. C.; Reilley, C. N. Anal. Chem. 1982, 54, 610. (179) Krestov, G. A.; Kurakina, G. I. Russ. J. Inorg. Chem. (Engl. Transl.) 1970, 15, 37. (180) Sayre, E. V.; Miller, D. G.; Freed, S. J. Chem. Phys. 1957, 26, 109. - (181) Sage, M. L.; Buonocore, M. H.; Pink, H. S. Chem. Phys. 1979, - Görller-Walrand, C.; Godemont, J. J. Chem. Phys. 1977, 66, - (183) Moeller, T.; Kremers, H. E. J. Phys. Chem. 1944, 48, 395. (184) Moeller, T.; Kremers, H. E. Chem. Rev. 1945, 37, 97. - (185) Grebenshchikova, V. I.; Davydov, Yu. P.; Pershin, A. S. Sov. Radiochem. (Engl. Transl.) 1971, 13, 542. - (186) Weaver, B.; Shoun, R. R. In "Proceedings of the 9th Rare Earth Research Conference"; Virginia Polytechnic Institute and State University, Blacksburg, VA, 1971; Vol. 1, pp - (187) Baes, C. F., Jr.; Mesmer, R. E. "The Hydrolysis of Cations"; - (187) Baes, C. F., Jr.; Mesmer, R. E. "The repurelysis of Cations, Wiley-Interscience: New York, 1976. (188) Ivanov-Emin, B. N.; Siforova, E. N.; Fisher, M. M.; Kampos, V. M. Russ. J. Inorg. Chem. (Engl. Transl.) 1966, 11, 258. (189) Nevskii, N. N.; Ivanov-Emin, B. N.; Nevskaya, N. A. Russ. J. Inorg. Chem. (Engl. Transl.) 1983, 28, 1074. (190) Ivanov-Emin, B. N.; Nisel'son, L. A. Russ. J. Inorg. Chem. (Engl. Transl.) 1960, 5, 237 - (190) Ivanov-Emin, B. N.; Nisel'son, L. A. Russ. J. Inorg. Chem. (Engl. Transl.) 1960, 5, 937. (191) Kragten, J.; Decnop-Weever, L. G. Talanta 1979, 26, 1105. (192) Kragten, J.; Decnop-Weever, L. G. Talanta 1980, 27, 1047. (193) Pershin, A. S. Sov. Radiochem. (Engl. Transl.) 1983, 25, 626. (194) Frolova, U. K.; Kumok, V. N.; Serebrennikov, V. V. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 1966, 9, 176; Chem. Abstr. 1966, 65, 9816c. (195) Marin, B.; Kikindai, T. C. R. Séances Acad. Sci., Sér. C 1969, 268. 1. - Guillaumont, R.; Désiré, B.; Galin, M. Radiochem. Radioanal. Lett. **197**1, 8, 189 - (197) Usherenko, L. N.; Skorik, N. A. Russ. J. Inorg. Chem. (Engl. - Transl.) 1972, 17, 1533. (198) Schmidt, K. H.; Sullivan, J. C.; Gordon, S.; Thompson, R. C. Inorg. Nucl. Chem. Lett. 1978, 14, 429. (199) Nair, G. M.; Chander, K.; Joshi, J. K. Radiochim. Acta 1982, - Caceci, M. S.; Choppin, G. R. Radiochim. Acta 1983, 33, 101. - (201) Bilal, B. A.; Koss, V. J. Inorg. Nucl. Chem. 1981, 43, 3393. (202) Vlček, A. A. Chem. Listy 1958, 52, 214. - (203) Kinard, W. F.; Philp, R. H., Jr. J. Electroanal. Chem. 1970, - (204) de Kreuk, C. W.; Sluyters-Rehbach, M.; Sluyters, J. H. J. - Electroanal. Chem. 1970, 28, 391. Niki, K.; Mizota, H. J. Electroanal. Chem. 1976, 72, 307. Choppin, G. R.; Unrein, P. J. J. Inorg. Nucl. Chem. 1963, 25, - (207) Moulin, N.; Hussonnois, M.; Brillard, L.; Guillaumont, R. J. Inorg. Nucl. Chem. 1975, 37, 2521. (208) (a) Kozachenko, N. N.; Batyaev, I. M. Russ. J. Inorg. Chem. - (Engl. Transl.) 1971, 16, 66. (b) Silber, H. B.; Bordano, G. J. Inorg. Nucl. Chem. 1979, 41, 1169. - (209) Fukasawa, T.; Kawasuji, I.; Mitsugashira, T.; Satô, A.; Suzuki, - (209) Fukasawa, T.; Kawasuji, I.; Mitsugashira, T.; Satô, A.; Suzuki, S. Bull. Chem. Soc. Jpn. 1982, 55, 726. (210) Breen, P. J.; Horrocks, W. D., Jr. Inorg. Chem. 1983, 22, 536. (211) Tanaka, F.; Yamashita, S. Inorg. Chem. 1984, 23, 2044. (212) Peppard, D. F.; Mason, G. W.; Hucher, I. J. Inorg. Nucl. Chem. 1962, 24, 881. (213) Irving, H. M. N. H.; Khopkar, P. K. J. Inorg. Nucl. Chem. 1964, 26, 1561. (214) Sekine, T. J. Inorg. Nucl. Chem. 1964, 26, 1463. (215) Bansal, B. M. L.; Patil, S. K.; Sharma, H. D. J. Inorg. Nucl. Chem. 1964, 26, 993. (216) Khopkar, P. K.: Narayanankutty P. J. Inorg. Nucl. Chem. - (216) Khopkar, P. K.; Narayanankutty, P. J. Inorg. Nucl. Chem. 1**97**1, *33*, 495. - (217) Spedding, F. H.; Walters, J. P.; Baker, J. L. J. Chem. Eng. Data 1975, 20, 438. (218) Spedding, F. H.; Rard, J. A.; Saeger, V. W. J. Chem. Eng. Data 1974, 19, 373. - Data 1974, 19, 373. (219) Spedding, F. H.; Witte, D. L.; Shiers, L. E.; Rard, J. A. J. Chem. Eng. Data 1974, 19, 369. (220) Jeżowska-Trzebiatowska, B.; Ernst, S.; Legendziewicz, J.; Oczko, G. Bull. Acad. Pol. Sci., Sér. Sci. Chim. 1976, 24, 997. (221) Oczko, G.; Legendziewicz, J.; Jeżowska-Trzebiatowska, B.; Ernst, S. Bull. Acad. Pol. Sci., Sér. Sci. Chim. 1982, 28, 793. (222) Walker, J. B.; Choppin, G. R. Adv. Chem. Ser. 1967, no. 71, pp 127-140. (223) (a) Bilal B. A. Koos V. Legendziewicz, Chim. 1982, 28, 200. - (223) (a) Bilal, B. A.; Koss, V. J. Inorg. Nucl. Chem. 1980, 42, 629. (b) Becker, P.; Bilal, B. A. J. Solution Chem. 1985, 14, 407. (224) Bilal, B. A.; Koss, V. Polyhedron 1982, 1, 239. (225) Glaser, J.; Johansson, G. Acta Chem. Scand., Ser. A 1981, 35, - (226) Giuliani, J. F.; Donohue, T. Inorg. Chem. 1978, 17, 1090. (227) Lundqvist, R.; Hulet, E. K.; Baisden, P. A. Acta Chem. Scand. Ser. A 1981, 35, 653. - Bünzli, J.-C. G.; Yersin, J.-R. Inorg. Chem. 1979, 18, 605. Spedding, F. H.; Shiers, L. E.; Brown, M. A.; Derer, J. L.; Swanson, D. L.; Habenschuss, A. J. Chem. Eng. Data 1975, - (230) Spedding, F. H.; Baker, J. L.; Walters, J. P. J. Chem. Eng. Data 1975, 20, 189. (231) Jeżowska-Trzebiatowska, B.; Ernst, S.; Legendziewicz, J.; Oczko, G. Bull. Acad. Pol. Sci. Sér. Sci. Chim. 1978, 26, 805. (232) Libuś, Z.; Sadowska, T.; Trzaskowski, J. J. Chem. Thermodynamics 1979, 11, 115, 115. - dyn. 1979, 11, 1151. - (233) Spedding, F. H.; Mohs, M. A.; Derer, J. L.; Habenschuss, A. J. Chem. Eng. Data 1977, 22, 142. (234) Roulet, R.; Chenaux, R. Helv. Chim. Acta 1972, 55, 1959. - Choppin, G. R.; Bertha, S. L. J. Inorg. Nucl. Chem. 1973, 35, (235)1309. - (236)Morris, D. F. C.; Tharwat, M. Radiochem. Radioanal. Lett. 1981, 50, 99. - (237)Choppin, G. R.; Ensor, D. D. J. Inorg. Nucl. Chem. 1977, 39, - (238) Miyamoto, H., Niigata University, Niigata, Japan, private correspondence, Oct. 5, 1984. Miyamoto, H.; Shimura, H.; - Sasaki, K. J. Solution Chem. 1985, 14, 485. Genge, J. A. R.; Salmon, J. E. J. Chem. Soc. 1959, 1459. Borisov, M. S.; Elesin, A. A.; Lebedev, I. A.; Filimonov, V. T.; - Yakovlev, G. N. Sov. Radiochem. (Engl. Transl.) 1966, 8, 40. (241) (a) Barnes, J. C. J. Chem. Soc. 1964, 3880. (b) Nieuwenhuizen, M. S.; Peters, J. A.; Sinnema, A.; Kieboom, A. P. G.; van Bekkum, H. J. Am. Chem. Soc. 1985, 107, 12. (242) Fromage, F.; Faucherre, J. C. R. Hebd. Séances Acad. Sci. - 1965, 260, 572. - (243) Lundqvist, R. Acta Chem. Scand. Ser. A 1982, 36, 741. (244) Dumonceau, J. "Stabilité des Tétracarbonatolanthanidates-(III), Application à l'Etude des Carbonates Complexes Mixtes"; Thesis, Univ. de Reims, 1977. (245) Manning, P. G.; Monk, C. B. Trans. Faraday Soc. 1962, 58, - (246) de Carvalho, R. G.; Choppin, G. R. J. Inorg. Nucl. Chem. - 1967, 29, 737. (247) Izatt, R. M.; Eatough, D.; Christensen, J. J.; Bartholomew, C. - (24) Izatt, R. M.; Eatough, D.; Christensen, J. J.; Bartholomew, C. H. J. Chem. Soc. A 1969, 47. (248) Hale, C. F.; Spedding, F. H. J. Phys. Chem. 1972, 76, 1887. (249) Bilal, B. A.; Koss, V. J. Inorg. Nucl. Chem. 1980, 42, 1064. (250) Fay, D. P.; Purdie, N. J. Phys. Chem. 1969, 73, 3462. (251) Fay, D. P.; Purdie, N. J. Phys. Chem. 1970, 74, 1160. (252) (a) Farrow, M. M.; Purdie, N. J. Solution Chem. 1973, 2, 503. - (b) Shevchuk, I. A.; Simonova, T. N.; Tarasenko, L. E. Russ. - J. Inorg. Chem. (Engl. Transl.) 1976, 21, 1198. Choppin, G. R.; Strazik, W. F. Inorg. Chem. 1965, 4, 1250. Marcantonatos, M. D.; Deschaux, M.; Veilleumier, J.-J. (253) - (254)Chem. Phys. Lett. 1981, 82, 36. - (255) Rard, J. A.; Shiers, L. E.; Heiser, D. J.; Spedding, F. H. J. Chem. Eng. Data 1977, 22, 337. (256) Rard, J. A.; Spedding, F. H. J. Chem. Eng. Data 1982, 27, - (257) Jeżowska-Trzebiatowska, B.; Ernst, S.; Legendziewicz, J.; Oczko, G. Bull. Acad. Pol. Sci., Sér. Sci. Chim. 1977, 25, 649. (258) Rard, J. A.; Spedding, F. H. J. Phys. Chem. 1975, 79, 257. (259) Freed, S. Rev. Mod. Phys. 1942, 14, 105. (260) Chiarizia, R.; Danesi, P. R.; Scibona, G.; Magon, L. J. Inorg. - Nucl. Chem. 1973, 35, 3595 - (261) Choppin, G. R.; Kelly, D. A.; Ward, E. H. In "Solvent Extraction Chemistry"; Dyrssen, D., Liljenzin, J.-O., Rydberg, J., Eds.; North-Holland: Amsterdam, 1967; pp 46-53. (262) Klygin, A. E.; Smirnova, I. D.; Kolyada, N. S.; Malkina, E. N - (263) Pitzer, K. S., Peterson, J. R.; Silvester, L. F. J. Solution Chem. 1978, 7, 45. (264) Onstott, E. I.; Brown, L. B.; Peterson, E. J. Inorg. Chem. - 1984, 23, 2430. - (265) Pikaev, A. K.; Sibirskaya, G. K.; Spitsyn, V. I. Dokl. Phys. Chem. (Engl. Transl.) 1973, 209, 339. (266) Jantsch, G.; Grubitsch, H.; Lischka, E. Z. Elektrochem. An- - gew. Phys. Chem. **1937**, 43, 293. - (267) McCoy, H. N. J. Am. Chem. Soc. 1936, 58, 1577. (268) Holleck, L. Z. Elektrochem. Angew. Phys. Chem. 1940, 46, - (269) Macero, D. J.; Anderson, L. B.; Malachesky, P. J. Electroanal. Chem. 1965, 10, 76. Anderson, L. B.; Macero, D. J. J. Phys. Chem. 1963, 67, 1942. - (271) Timmer, B.; Sluyters-Rehbach, M.; Sluyters, J. H. J. Elec- - troanal. Chem. 1967, 14, 181. (272) Biedermann, G.; Silber, H. B. Acta Chem. Scand. 1973, 27, - (273) Elżanowska, H.; Galus, Z.; Borkowska, Z. J. Electroanal. Chem. 1983, 157, 251. - (274) Biedermann, G.; Terjošin, G. S. Acta Chem. Scand. 1969, 23, - (275) Morss, L. R. Haug, H. O. J. Chem. Thermodyn. 1973, 5, 513. (276) Shul'gin, L. P.; Koz'min, Yu. A. Russ. J. Phys. Chem. (Engl. Transl.) 1963, 37, 1003. - Morss, L. R. Chem. Rev. 1976, 76, 827. - Nugent, L. J.; Baybarz, R. D.; Burnett, J. L.; Ryan, J. L. J. (278) - Phys. Chem. 1973, 77, 1528. Wagman, D. D.; Evans, W. H.; Parker, V. B.; Halow, I.; Baily, S. M.; Schumm, R. H. Washington, D.C., 1968, Technical Note 270-3, NBS. - (280) Lounasmaa, O. V. Phys. Rev. 1964, 133, A502. (281) Krusius,
M.; Pickett, G. R.; Veuro, M. C. Solid State Commun. 1974, 14, 191. - (282) Polovov, V. M.; Majstrenko, L. G. Sov. Phys. JETP (Engl. Transl.) 1975, 41, 707. (283) Stull, D. R.; Sinke, G. C. "Thermodynamic Properties of the Elements"; American Chemical Society: Washington, D.C., 1956; pp 85-86. - (284) McMasters, O. D.; Gschneidner, K. A., Jr.; Kaldis, E.; Sampietro, G. J. Chem. Thermodyn. 1974, 6, 845. (285) Chirico, R. D.; Westrum, E. F., Jr. J. Chem. Thermodyn. - **1980**, *12*, 71 - (286) Westrum, E. F., Jr. Adv. Chem. Ser. 1967, No. 71, pp 25-50. (287) Chirico, R. D.; Westrum, E. F., Jr.; Gruber, J. B.; Warmkessel, J. J. Chem. Thermodyn. 1979, 11, 835. - (288) Chirico, R. D.; Westrum, E. F., Jr. J. Chem. Thermodyn. **1980**, *12*, 311 - (289) Chirico, R. D.; Westrum, E. F., Jr. J. Chem. Thermodyn. 1981, 13, 519. - (290) Chirico, R. D.; Boerio-Goates, J.; Westrum, E. F., Jr. J. Chem. Thermodyn. 1981, 13, 1087 - (291) Sommers, J. A.; Westrum, E. F., Jr. J. Chem. Thermodyn. 1976, 8, 1115 - (292) Pankratz, L. B.; King, E. G.; Kelley, K. K. U.S. Department of the Interior, Washington, D.C., 1962, Report Invest. No. 6033; U.S. Bureau of Mines. - Tsagareishvili, D. Sh.; Gvelesiani, G. G. Russ. J. Inorg. Chem. Engl. Transl.) 1965, 10, 171. - (294) Gilchrist, K. E.; Preston, S. D. High Temp. High Pressures **1979**, 11, 643. - Schumm, R. H.; Wagman, D. D.; Bailey, S.; Evans, W. H.; Parker, V. B. Washington, D.C., 1983, Technical Note 270-7, - (296) Kaldis, E.; Peteler, W. J. Cryst. Growth 1977, 40, 298 - (297) Fenochka, B. V.; Gordienko, S. P. Russ. J. Phys. Chem. (Engl. Transl.) 1973, 47, 1384. - (298) Dwivedi, R. K.; Kay, D. A. R. Metall. Trans. B 1984, 15B, - (299) Huber, E. J., Jr.; Fitzgibbon, G. C.; Holley, C. E., Jr. J. Phys. - Chem. 1964, 68, 2720. (300) Stuve, J. M. U.S. Department of the Interior, Washington, - D.C., 1965, Report Invest. No. 6640, U.S. Bureau of Mines. (301) Yashvili, T. S.; Gvelesiani, G. G. Russ. J. Phys. Chem. (Engl. Transl.) 1971, 45, 551. (302) Fitzgibbon, G. C.; Huber, E. J., Jr.; Holley, C. E., Jr. J. Chem. - Thermodyn. 1972, 4, 349. (303) Stubblefield, C. T.; Rutledge, J. L.; Phillips, R. J. Phys. Chem. 1965, 69, 991. - (304) Burnett, J. L.; Cunningham, B. B. Berkeley, CA, 1964, Report UCRL-11126, University of California, Lawrence Berkeley Laboratory - (305) Bommer, H.; Hohmann, E. Z. Anorg. Allg. Chem. 1941, 248, - (306) Machlan, G. R.; Stubblefield, C. T.; Eyring, L. J. Am. Chem. - (307) Huber, E. J., Jr., Holley, C. E., Jr. J. Chem. Thermodyn. 1969, 1, 301; 1970, 2, 896 (errata). (308) Stubblefield, C. T.; Eyring, L. J. Am. Chem. Soc. 1955, 77, - (309) (a) Il'ina, L. D.; Khanaev, E. I. Probl. Kalorim. Khim. Termodin. Vses. Konf., Sb. Dop. Dokl., 10th, 1984 1984, 1, 143; Chem. Abstr. 1985, 102, 101460e. (b) Powell, J. E. Ames, IA, 1959, Report IS-15, Ames Laboratory, pp 10-15. (310) Mason, C. M. J. Am. Chem. Soc. 1941, 63, 220. (311) Kotlyar-Shapirov, G. S.; Sokolova, N. P.; Sorokina, A. A. Akad. Nauk SSSR Sib. Otde. Izv. Ser. Khim. Nauk: Novosib 1976, 4, 44 - sib. 1976, 4, 44. - (312) Gierst, L.; Cornelissen, P. Collect. Czech. Chem. Commun. 1960, 25, 3004. - (a) Hariharan, A. V.; Eick, H. A. High. Temp. Sci. 1972, 4, 379. (b) Haschke, J. M.; Eick, H. A. J. Phys. Chem. 1970, 74, 1806. (c) Haschke, J. M. High Temp. Sci. 1977, 9, 77. (d) Afanas'ev, Yu. A.; Koroleva, T. I. Sov. Radiochem. (Engl. Transl.) 1972, 15, 244. - (316) Yakunina, G. M.; Alekseenko, L. A.; Serebrennikov, V. V. Russ. J. Inorg. Chem. (Engl. Transl.) 1969, 14, 1414. (317) Hájek, B.; Hradilová, J. J. Less-Common Met. 1971, 23, 217. (318) Spedding, F. H.; Jaffe, S. J. Am. Chem. Soc. 1954, 76, 884. (319) Karapet yants, M. Kh.; Maier, A. I.; Bas'kova, N. A. Inorg. - Mater. (Engl. Transl.) 1977, 13, 858. (320) Long, E. A.; Degraff, R. A. J. Am. Chem. Soc. 1942, 64, 1346. (321) Jackson, K. S.; Rienäcker, G. J. Chem. Soc. 1930, 1687. (322) Akhachinskii, V. V.; Il'yashenko, V. S. Russ. J. Phys. Chem. Engl. Transl.) 1975, 49, 464. - (323)Sklyarenko, Yu. S.; Stroganova, N. S. Russ. J. Inorg. Chem. - (Engl. Transl.) 1965, 10, 348. Yakovleva, E. V.; Keis, Kh. E.; Nikolaeva-Fedorovich, N. V. (324)Sov. Electrochem. (Engl. Transl.) 1968, 4, 501. - (325) Hata, S.; Hosoe, M. Mem. Def. Acad., Math., Phys., Chem. Eng. (Yokosuka, Jpn) 1972, 12, 53. Chem. Abstr. 1973, 78, - (326) Sklyarenko, Yu. S.; Stroganova, N. S.; Ivanov, V. I. Russ. J. - (326) Sklyarenko, Yu. S.; Stroganova, N. S.; Ivanov, V. I. Russ. J. Inorg. Chem. (Engl. Transl.) 1965, 10, 1203. (327) Rard, J. A.; Miller, D. G. J. Chem. Eng. Data 1981, 26, 33. (328) Rard, J. A. J. Chem. Eng. Data 1984, 29, 443. (329) Vasil'ev, G. I.; Rublev, B. L.; Serebrennikov, V. V. Tr. Tomsk. Gos. Univ. 1965, 185, 54; Chem. Abstr. 1967, 68, 32376f. (330) Lingane, J. J. Anal. Chem. 1968, 40, 935. (331) Nikolaev, N. S.; Abdurakhmanov, Sh. A.; Dzhuraev, Kh. Sh. Puss. J. Langa Chem. (Engl. Transl.) 1974, 19, 618. - Russ. J. Inorg. Chem. (Engl. Transl.) 1974, 19, 618. Koroleva, G. N.; Gava, S. A.; Poluektov, N. S.; Kirillov, A. I.; Kornelli, M. E. Dokl. Phys. Chem. (Engl. Transl.) 1976, 228, (332) - (333) Vasil'ev, V. P.; Kozlovskii, E. V. Russ. J. Inorg. Chem. (Engl. Transl.) 1977, 22, 472. - (334) Menon, M. P. J. Radioanal. Chem. 1981, 63, 283. (335) (a) Storozhenko, T. P.; Khanaev, E. I.; Afanas'ev, Yu. A. Russ. J. Phys. Chem. (Engl. Transl.) 1975, 49, 1241; 1976, 50, 1304. (b) Zmbov, K. F.; Margrave, J. L. J. Inorg. Nucl. Chem. 1967, 29, 59. (c) Petzel, T.; Greis, O. Z. Anorg. Allg. Chem. 1972, 388, 137 - (336) Frausto Da Dilva, J. J. R.; Queimado, M. M. Rev. Port. Quim. 1973, 15, 29. - (337) Itoh, H.; Hachiya, H.; Tsuchiya, M.; Suzuki, Y.; Asano, Y. Bull. Chem. Soc. Jpn. 1984, 57, 1689. (338) Kim, K.-Y.; Johnson, C. E. J. Chem. Thermodyn. 1981, 13, - (339) Spedding, F. H.; Beaudry, B. J.; Henderson, D. C.; Moorman, - J. J. Chem. Phys. 1974, 60, 1578. (340) Porai-Koshits, M. A.; Aslanov, L. A.; Ionov, V. M. Izv. Akad. - Nauk SSSR, Ser. Khim. 1972, 1450. (341) Kozachenko, N. N.; Panteleeva, N. A.; Netsvetaeva, V. S.; Batyaev, I. M. Russ. J. Inorg. Chem. (Engl. Transl.) 1973, 18, - Aziz, A.; Lyle, S. J. J. Inorg. Nucl. Chem. 1970, 32, 2383. Makarova, T. P.; Stepanov, A. V.; Shestakov, B. I. Russ. J. Inorg. Chem. (Engl. Transl.) 1973, 18, 783. (343)